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Abstract: In this paper, we describe an automated integration-free path-integral (AIF-PI) method
[Wong, K.-Y.; Gao, J. J. Chem. Phys. 2007, 127, 211103], based on Kleinert’s variational perturbation
(KP) theory, to treat internuclear quantum-statistical effects in molecular systems. We have developed
an analytical method to obtain the centroid potential as a function of the variational parameter in the
KP theory, which avoids numerical difficulties in path-integral Monte Carlo or molecular dynamics
simulations, especially at the limit of zero-temperature. Consequently, the variational calculations
using the KP theory can be efficiently carried out beyond the first order, i.e., the Giachetti-Tognetti-
Feynman-Kleinert variational approach, for realistic chemical applications. By making use of the
approximation of independent instantaneous normal modes (INM), the AIF-PI method can be applied
to many-body systems, and it was shown previously that the AIF-PI method is accurate for computing
the quantum effects including a water molecule and the collinear H3 reaction. In this work, the
accuracy and properties of the KP theory are further investigated by using the first three-order
perturbations on an asymmetric double-well potential, the bond vibrations of H2, HF, and HCl
represented by the Morse potential, and a proton-transfer barrier modeled by the Eckart potential.
The zero-point energy, quantum partition function, and tunneling factor for these systems have been
determined and are found to be in excellent agreement with the exact quantum results. Using our
new analytical results at the zero-temperature limit, we show that the minimum value of the computed
centroid potential in the KP theory is in excellent agreement with the ground-state energy (zero-point
energy), and the position of the centroid potential minimum is the expectation value of particle position
in wave mechanics. The fast convergent property of the KP theory is further examined in comparison
with results from the traditional Rayleigh-Ritz variational approach and Rayleigh-Schrödinger perturbation
theory in wave mechanics. The present method can be used for thermodynamic and quantum dynamic
calculations, including systematically determining the exact value of zero-point energy and studying kinetic
isotope effects for chemical reactions in solution and in enzymes.

1. Introduction

Kleinert’s variational perturbation (KP) theory1-7 for the
centroid density8-15 of Feynman path integrals1,8,16-26

provides a complete theoretical foundation for developing
nonstochastic methods27 to systematically incorporate inter-
nuclear quantum-statistical effects28 in condensed phase

systems. Computational methods based on the KP theory
complement conventional Fourier or discretized path-integral
Monte-Carlo29-39 (PIMC) and molecular dynamics12,13,40-43

(PIMD) simulations which have been widely used in
condensed phases.44-58 Recently, we reported a computa-
tional method based on the KP theory for chemical applica-
tions.59 In this approach which is called an automated
integration-free path-integral (AIF-PI) method,59 the path
integrals in the perturbation expansion have been analytically

* Corresponding author e-mail: kiniu@umn.edu; permanent
e-mail: kiniu@alumni.cuhk.net.

J. Chem. Theory Comput. 2008, 4, 1409–1422 1409

10.1021/ct800109s CCC: $40.75  2008 American Chemical Society
Published on Web 09/09/2008



integrated, resulting in expressions that are free of path
integrations and can be efficiently used to study quantum-
statistical effects. For many-body systems, we make use of
the independent instantaneous normal mode (INM) ap-
proximation such that the internuclear potential energy
function along each instantaneous normal mode coordinate
is expanded in terms of one-dimensional polynomial functions.

To this end, we derived analytical expressions for the centroid
effective potential up to the third order of the Kleinert
perturbation (KP3).59 The most attractive feature of the KP
theory is that the perturbation series converges uniformly and
exponentially.1,60,61 We have shown that the second-order KP
theory (KP2) implemented in the AIF-PI method with the INM
approximation is accurate for a number of test cases, including
the quantum partition function of a water molecule (3 degrees
of freedom) and the rate of the collinear H3 reaction (2 degrees
of freedom), in comparison with accurate quantum results.59

Moreover, owing to the integration-free feature, our AIF-PI
method is computationally efficient such that the potential
energy can be evaluated using ab initio62-64 or density-
functional theory65 (DFT) to perform the so-called ab initio
path-integral calculations.44-50 Consequently, we used the
hybrid functional B3LYP66 to construct the potential energy
function to compute kinetic isotope effects (KIE) on a series
of proton transfer reactions in water with the AIF-PI method.
The computed KIE results at the KP2 level are in excellent
agreement with experiment.59

A closely related theoretical approach is the variational
method independently introduced by Giachetti and Tognetti67

and by Feynman and Kleinert68 (hereafter labeled as GTFK),
which formally corresponds to the first-order approximation
in the KP theory, i.e., KP1.1,67-69 The GTFK method has
been applied to a variety of systems,1,70-79 including
quantum dynamic processes in condensed phases (e.g., water
and helium).76-79 Although the original GTFK approach is
among the most accurate approximate methods for estimating
the path-integral centroid potential in many applications,27

significant errors can exist in situations in which quantum
effects are dominant, especially at low temperatures.27 Our
initial report59 as well as studies by Kleinert et al. on model
systems1-7 showed that higher order perturbations of KP
theory can significantly and systematically improve compu-
tational accuracy over the KP1 results.

In this article, we use the AIF-PI method to further
examine the computational accuracy and properties of the
KP theory, making use of a number of test cases that have
been well-characterized analytically and computationally.
These include an asymmetric double-well potential,27 the
Morse potential,80 and the Eckart potential.81

For the double-well and Morse potentials, we focus on the
quantum partition function as a function of temperature as well
as the free energy at the zero-temperature limit (T ) 0 K), where
the minimization of the centroid potential yields two important
physical quantities:1,14,15,68 the exact ground-state energy, i.e.,
zero-point energy (ZPE), and the expectation value of the
nuclear position in the ground state. Hence, the newly derived
analytical results at the limit of zero-temperature (Supporting
Information) provide a convenient way to systematically
compute the exact values of these two important physical

quantities without solving the vibrational Schrödinger equation.
At the zero-temperature limit, we demonstrate that the fast
convergent property of KP theory becomes transparent by
comparing the ground-state energy of the Morse potential with
that determined by the traditional Rayleigh-Ritz variational
method82-85 and Rayleigh-Schrödinger perturbation the-
ory.63,86,87 For the Eckart potential, we focus on the tunneling
effect88,89 corresponding to a proton transfer at a wide range
of temperatures. Comparison of the AIF-PI method with other
approximate methods, PIMC or PIMD simulations, and accurate
quantum results are also given. In addition, we discuss the
selection of the optimal variational parameter Ω, and the
temperature-dependence of zero-Ω limit which corresponds to
the free-particle reference frame used in the Feynman-Hibbs
variational approach.8

2. Kleinert’s Variational Perturbation Theory

In this section, we briefly review Kleinert’s variational
perturbation (KP) theory1–7 and its relationship to the original
Giachetti-Tognetti and Feynman-Kleinert (GTFK) variational
approach.1,67-69 The path-integral (PI) representation of the
canonical quantum mechanical (QM) partition function QQM

for a one-particle one-dimensional system can be written in
terms of the centroid effective potential W as a classical
configuration integral1,8,13-15

QQM )�MkBT

2πp2 ∫-∞

∞
e-�W(x0)dx0 (1)

where M is the mass of the particle, kB is Boltzmann’s constant,
T is temperature, p is Planck’s constant divided by 2π, � )
1/kBT, and x0 is a point in configurational space. Given the
centroid potential W(x0), thermodynamic and quantum dynamic
quantities can be accurately determined,1,8,13-15,44-50 including
molecular spectroscopy of quantum fluids76-79 and the rate
constant of chemical and enzymatic reactions.9-13,51-58,69 The
mass-dependent nature of W(x0) is also of particular interest
because isotope effects can be obtained, and it has been applied
to enzymatic reactions52,53,56-58 and carbon nanotubes.90

The centroid potential W(x0) in eq 1 is defined as
follows1,8,13-15

W(x0))-kBT ln[� 2πp2

MkBT
ID[x(τ)]δ(x- x0)

exp{-A[x(τ)] ⁄ p}] (2)

where τ is imaginary time, x(τ) is a function describing a
path in space-time, ID[x(τ)] δ(xj-x0) denotes a summation
over all possible closed paths in which xj is equal to x0 (i.e.,
a functional integration), and xj is the time-average position,
called ‘centroid’

x ≡ 1
�p∫0

�p
x(τ)dτ (3)

In eq 2, A is the quantum-statistical action

A[x(τ)])∫0

�p
dτ{ M

2
ẋ(τ)2 +V[x(τ)]} (4)
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where V(x) is the potential energy function of the system.
Generalization of eqs 1and 2 to a multidimensional system
is straightforward.1,8

A number of computational approaches have been developed
to approximately estimate the centroid potential. Feynman and
Hibbs described a first-order cumulant expansion by introducing
a Gaussian smearing function in a free-particle reference frame
to yield an upper bound on the centroid potential.8 This was
subsequently modified by Doll and Myers (DM) by using a
Gaussian width associated with the angular frequency at the
minimum of the original potential.91 The GTFK approach is
another variational method that adopts a harmonic reference
state by variationally optimizing the angular frequency.67-69

Mielke and Truhlar employed a free-particle reference state and
approximated the sum over paths by a minimal set of paths
constrained for a harmonic oscillator. The action integral (eq
4) is then obtained by using the three-point trapezoidal rule for
the potential to yield the displaced-point path-integral (DPPI)
centroid potential.27

In Kleinert’s variational perturbation (KP) theory,1-7 one
first constructs a harmonic reference state characterized by
a trial angular frequency Ω at a given centroid position x0

(and temperature T), and then systematically builds up
anharmonic corrections to the centroid potential of this
reference system. Given the reference, or trial harmonic
action

AΩ
x0 )∫0

�p
dτ{ M

2
ẋ(τ)2 + 1

2
MΩ2[x(τ)- x0]

2} (5)

the centroid potential W(x0) in eq 2 can be expressed as a
path integral of the harmonic action which is perturbed by
the anharmonicity of the original potential

e-�W(x0) )� 2πp2

MkBT
ID[x(τ)]δ(x- x0)e

-A Ω
x0 ⁄ pe-(A-A Ω

x0) ⁄ p

)QΩ
x0〈e-(A-A Ω

x0) ⁄ p〉Ω
x0 (6)

where QΩ
x0 is the local harmonic partition function given as

follows

QΩ
x0 )� 2πp2

MkBT
ID[x(τ)]δ(x- x0)e

-A Ω
x0 ⁄ p) �pΩ ⁄ 2

sinh(�pΩ ⁄ 2)

(7)

and 〈 · · · 〉Ω
x0 is the expectation value over all closed paths of

the harmonic action in eq 5 (i.e., a functional average)

〈e-F[x(τ)] ⁄ p〉Ω
x0 ) 1

QΩ
x0� 2πp2

MkBT
ID[x(τ)] ×

δ(x- x0)e
-F[x(τ)] ⁄ pe-A Ω

x0 ⁄ p (8)

In eq 8, F[x(τ)] denotes an arbitrary functional. It is of interest
to note that eq 6 is the starting point of Zwanzig’s statistical-
mechanical perturbation theory,92 which has been extensively
used in free energy calculations through Monte Carlo and
molecular dynamics simulations.93,94

If we expand the exponential functional in eq 6 and sum
up the prefactors into an exponential series of cumulants,95

the nth-order approximation, Wn
Ω(x0), to the centroid potential

W(x0) can be written as follows1,2

e-�Wn
Ω(x0) )QΩ

x0 exp{-1
p
∫0

�p
dτ〈A int

x0 〉Ω,c
x0 +

1

2 ! p2∫0

�p
dτ1∫0

�p
dτ2〈A int

x0 [x(τ1)]A int
x0 [x(τ2)] 〉Ω,c

x0 + · · · +

{∏
j)1

n ∫0

�p
dτj} (-1)n

n ! pn 〈∏
k)1

n

A int
x0 [x(τk)]〉Ω,c

x0

(9)

where A int
x0 ) A - A Ω

x0 is the so-called inter-action,
representing the perturbation to the harmonic reference state,
and 〈 · · · 〉Ω,c

x0 is a cumulant which can be written in terms of
expectation values 〈 · · · 〉Ω

x0 by the cumulant expansion, e.g.,

〈A int
x0 [x(τ)]〉Ω,c

x0 ≡ 〈A int
x0 [x(τ)]〉Ω

x0 (10)

〈A int
x0 [x(τ1)]A int

x0 [x(τ2)]〉Ω,c
x0 ≡ 〈A int

x0 [x(τ1)]A int
x0 [x(τ2)]〉Ω

x0 -

{〈A int
x0 [x(τ)]〉Ω

x0}2 (11)

〈A int
x0 [x(τ1)]A int

x0 [x(τ2)]A int
x0 [x(τ3)]〉Ω,c

x0 ≡

〈A int
x0 [x(τ1)]A int

x0 [x(τ2)]A int
x0 [x(τ3)]〉Ω

x0 -

3〈A int
x0 [x(τ1)]A int

x0 [x(τ2)]〉Ω
x0 〈A int

x0 [x(τ)]〉Ω
x0 +

2{〈A int
x0 [x(τ)]〉Ω

x0}3 etc. (12)

More importantly, Kleinert and co-workers derived a general
expression for the expectation value of the form

{∏
j)1

n ∫0

�p
dτj} 〈∏

k)1

n

Fk[x(τk)]〉Ω

x0

in terms of Gaussian smearing convolution integrals5,6

{∏
j)1

n ∫0

�p
dτj} 〈∏

k)1

n

Fk[x(τk)]〉
Ω

x0

)

{∏
j)1

n ∫0

�p
dτj}{ ∏

k)1

n ∫-∞

∞
dxk Fk(xk)} ×

1

√(2π)nDet[aτkτk′
2 (Ω)]

exp {-1
2∑k)1

n

k′)1

(xk - x0)aτkτk′
-2 (Ω)(xk′ - x0)} (13)

where Det[aτkτk′

2 (Ω)] is the determinant of the n × n-matrix
consisting of the Gaussian width aτkτk′

2 (Ω), aτkτk′

-2 (Ω) is an
element of the inverse matrix of aτkτk′

2 (Ω), and the Gaussian
width is a function of the trial frequency Ω:

aττ′
2 (Ω)) 1

�MΩ2{ �pΩ
2

cosh[(|τ- τ′|- �p ⁄ 2)Ω]
sinh(�pΩ ⁄ 2)

- 1}
(14)

Using these smearing integrals in eq 13, the nth-order
Kleinert variational perturbation (KPn) approximation,
Wn

Ω(x0), in eq 9 can be written in terms of ordinary
integrations as follows1

Wn
Ω(x0))-kBT ln QΩ

x0 +
kBT

p
∫0

�p
dτ〈Vint

x0 [x(τ1)]〉Ω
x0 -

kBT

2 ! p2∫0

�p
dτ1∫0

�p
dτ2〈Vint

x0 [x(τ1)]Vint
x0 [x(τ2)]〉Ω,c

x0 + · · · +

kBT
(-1)n+1

n ! pn {∏
j)1

n ∫0

�p
dτj} 〈∏

k)1

n

Vint
x0 [x(τk)]〉Ω,c

x0

(15)
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where Vint
x0 [x(τ)] ) V[x(τ)]-1/2MΩ2[x(τ)-x0]2 (the kinetic

energy terms in eq 4 and eq 5 cancel out).

As n tends to infinity, Wn
Ω(x0) approaches the exact value

of the centroid potential W(x0) in eq 1, which is independent
of the trial Ω. But the truncated sum in eq 15 does depend
on Ω, and the optimal choice of this trial frequency at a
given order of KP expansion and at a particular centroid
position x0 (and temperature T) is determined by the least-
dependence of Wn

x0(Ω) on Ω itself. This is the so-called
frequency of least dependence,1 which provides a variational
approach to determine the optimal value of Ω, Ωopt,n(x0).

Of particular interest is the special case when n ) 1, which
turns out to be identical to the original GTFK variational
approach.1,67-69 An important property of KP1 or the GTFK
variational approach is that there is a definite upper bound
for the computed W1

Ω(x0) by virtue of the Jensen-Peierls
inequality, i.e., from eq 6 and eq 9

e-�W(x0) )

QΩ
x0〈exp(-A-AΩ

x0

p )〉
Ω

x0

gQΩ
x0exp〈-A-AΩ

x0

p 〉
Ω

x0

) e-�W1
Ω(x0)

(16)

Note that by choosing Ω ) 0 (i.e., the reference state for a
free particle), KP1 or GTFK reduces to the Feynman-Hibbs
approach.8 For higher orders of n, unfortunately, it is not
guaranteed that a minimum of Wn

x0(Ω) actually exists as a
function of Ω. In this case, the least dependent Ω is obtained
from the condition that the next derivative of Wn

x0(Ω) with
respect to Ω is set to zero.1,5,70 Consequently, Ω is
considered as a variational parameter in the Kleinert pertur-
bation theory such that Wn

x0[Ωopt,n(x0)] is least-dependent
on Ω.

This variational criterion relies on the uniformly and
exponentially convergent property of the KP theory. Kleinert
and co-workers proved that his theory exhibits this property
in several strong anharmonic-coupling systems.1,60,61 More
importantly, this remarkably fast convergent property can
also be observed even for computing the electronic ground-
state energy of a hydrogen atom (3 degrees of freedom). The
ground-state energy was determined by calculating the
electronic centroid potential at the zero-temperature limit.5

The accuracies of the first three orders of the KP theory for
a hydrogen atom are 85%, 95%, and 98%, respectively.

In practice, for odd n, there is typically a minimum point
in Ω,1,5,70 but due to the alternating sign of the cumulants
in eq 15, there is usually no minimum in Ω for even n.
Nevertheless, the frequency of least-dependence for an even-
order perturbation in n can be determined by locating the
inflection point, i.e., the zero-value of the second derivative
of Wn

x0(Ω) with respect to Ω.1,5,70 Since the KP expansion
is uniformly and exponentially converged, Kleinert has
demonstrated that the least-dependent plateau in Wn

x0(Ω),
which is characterized by a minimum point for odd n or by
an inflection point for even n, grows larger and larger with
increasing orders of n (e.g., Figure 5.16 in ref 1).

3. The Automated Integration-Free
Path-Integral Method

A major obstacle in applying the KP theory to realistic
molecular systems is the intricate n-dimensional space-time
(2n degrees of freedom) smearing integrals in eq 13 for the
KPn expansion. The complexity of the smearing integrals
increases considerably for multidimensional systems, where
Ω becomes a 3N × 3N matrix for N nuclei.1,5 Thus, the KP
theory quickly becomes numerically intractable beyond the
first-order perturbation, i.e., the GTFK variational approach.
To make the KP expansion feasible for many-body systems,
we make use of the independent instantaneous normal mode
(INM) approximation27,43,96,97 to reduce the multidimensional
potential to 3N one-body potentials. In the INM approxima-
tion, the total centroid effective potential for N nuclei is
simplified as

Wn
Ω({x0}

3N) ≈ V({x0}
3N)+∑

i)1

3N

wi,n
Ω (qi

x0) (17)

where wi,n
Ω(qi

x0) is the centroid potential for the INM coor-
dinate qi

x0. Note that the INM coordinates are naturally
decoupled through the second-order Taylor expansion. The
INM approximation has also been used elsewhere.27,43,96,97

This approximation should be especially suited for the KP
expansion because the Gaussian convolution integrals in eq
13 exhibit the exponential decaying property from the
centroid position.

For each INM, we further interpolate the potential energy
along the INM coordinate in terms of an mth-order polyno-
mial function because we have derived the analytical results
of the path integrals in eq 15 up to 20th-order polynomials.
Then, the optimal Ωopt(x0) is numerically located by finding
the least Ω-dependent centroid potential Wn

x0(Ω) (section 2).59

Hereafter, an mth-order polynomial representation of the
original potential energy function obtained with an interpo-
lating step size q Å both in the forward and backward
directions along the normal mode coordinate at x0 is denoted
as Pm-qA. Since the path integrals have been integrated
analytically, the time-demanding Monte-Carlo or molecular
dynamics samplings of eq 13 using different trial values of
Ω to optimize the centroid potential is no longer necessary.
Consequently, this essentially automated integration-free path
integral (AIF-PI) approach is remarkably efficient and can
be applied to chemical systems.59 Analytical results were
derived with Mathematica98 and are available as Supple-
mentary Material in ref 59.

In the INM approximation, previously we have shown
that the computed quantum effects using the AIF-PI
method are very encouraging for multidimensional sys-
tems, including systems that involve motions or vibrations
of the lightest nucleus, hydrogen.59 For example, we have
computed the quantum partition function of a water
molecule (3 degrees of freedom). At T ) 200 K, the lowest
temperature in which the exact partition function is
available, the KP1 result is 77% of the exact result, while
the KP2 value is 83% (note that the agreement in the
corresponding free energy is much better, which are 99.2%
and 99.4%, respectively, because of the logarithmic
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relationship between partition function and free energy),
which is similar to the accuracy of the second-order
Rayleigh-Schrödinger perturbation theory without reso-
nance correction (86%).59 Moreover, we have also com-
puted the quantum correction factor for the collinear H3

reaction (2 degrees of freedom), which is defined as the
ratio of the quantum rate constant to the rate constant
obtained by classical transition-state theory with quantum
vibrational partition function but neglect tunneling ef-
fects.59 In this reaction, both tunneling and vibrational
quantum effects are important. At T ) 200 K, again the
lowest temperature in which the exact values is available,
the KP1 and KP2 correction factors are 15 and 55,
respectively, whereas the exact result is 46.

Although the INM approximation sacrifices some ac-
curacy, in exchange, it makes possible analyses of specific
contributions to the centroid potential W due to quantum
mechanical vibration and tunneling. Positive and negative
values of wi in eq 17 raise (vibration) and lower (tunnel-
ing) the original potential V, respectively. In practice, real
frequencies from the INM analysis often yield positive
wi’s in eq 17, with dominant contributions due to zero-
point effects (e.g., Sections 5A and 5B). By contrast, for
imaginary frequencies in the INM, the values of wi are
often negative, corresponding to tunneling contributions
(e.g., Sections 5A and 5C). To this end, we have also
performed ab initio path-integral calculations44-50 to
determine kinetic isotope effects for a series of proton
transfer reactions in water within the INM approximation.
The agreement with experimental results is encouraging.59

Nevertheless, we are currently working on a formalism
to systematically couple instantaneous normal modes in the
AIF-PI method. We hope that one day this method could
also be used by nonpath-integral experts or experimentalists
as a ‘black-box’ for any given system.

4. Computational Details

The areas of the integrations for the classical configuration
integrals involving W(x0) in eq 1 were chosen such that their

values are converged at least up to 3 significant figures for
all systems considered (Supporting Information), and the
numerical integrations were performed with Mathematica.98

To compute the centroid potential, all the original potentials
were first mass-scaled in units of atomic mass unit (AMU).
For the asymmetric double-well potential, we computed the
eigenenergies by the Rayleigh-Ritz variational method82-85

(Supporting Information), in which the Schrödinger equation
was solved in a basis of 114 Gauss-Hermite polynomials.
The partition functions calculated by summing over these
eigenenergies with the Boltzmann factor are virtually identi-
cal to the quantum results reported in the Mielke-Truhlar
paper.27 Hence we treat them as the ‘accurate quantum’
values in Table 1 for the comparisons among all other
approximate path-integral methods.

In the case of Morse potential, we have also numerically
tested the sensitivity of using different orders of polyno-
mial representation of the original potential and different
interpolation steps, and we found that the results from
both P10-0.02A and P20-0.08A are in excellent agree-
ment. For example, at the equilibrium position of the
original potential, their difference in the KP2 effective
potential is less than 10-8 kcal/mol at a low temperature
of 50 K. For the calculations of the Rayleigh-Ritz
variational method and the Rayleigh-Schrödinger per-
turbation theory, we interpolated the Morse potential at
the equilibrium position as P10-0.02A and P10-0.04A.
Both interpolating polynomials return us the same energies
at least up to 10-5 kcal/mol.

5. Results and Discussion

To illustrate the performance and accuracy of the Kleinert
variational perturbation theory, we applied the AIF-PI
method59 to a number of well-studied systems, including an
asymmetric double-well potential,27 the Morse potential80

corresponding to the bond vibrations of H2,99 HF,100 and
HCl,99 and the Eckart potential81 representing a model of
proton transfer reactions.100,101

Table 1. Classical and Quantum Canonical Partition Functions, and Free Energies of the Asymmetric Double-Well Potential
at Various Temperaturesa

T (K) classical accurate quantum KP1 KP2 KP3 Mielke-Truhlarb Doll-Myersb

Canonical Partition Function
1000 4.03E-01 3.12E-01 0.0 0.1 0.0 0.2 -0.2
500 1.85E-01 7.09E-02 -0.3 0.4 0.0 0.7 -0.2
400 1.47E-01 3.62E-02 -0.6 0.4 0.0 0.8 0.4
300 1.10E-01 1.19E-02 -1.4 0.3 0.0 0.9 2.7
200 7.28E-02 1.30E-03 -3.5 -0.5 -0.2 -0.6 10.0
100 3.63E-02 1.69E-06 -10.4 -2.4 -1.0 -8.2 50.6
50 1.81E-02 2.85E-12 -23.2 -6.7 -2.9 -- --

Free Energy (kcal/mol)
1000 1.808 2.314 0.0 -0.1 0.0 -0.2 0.2
500 1.676 2.629 0.1 -0.1 0.0 -0.3 0.1
400 1.524 2.638 0.2 -0.1 0.0 -0.2 -0.1
300 1.317 2.641 0.3 -0.1 0.0 -0.2 -0.6
200 1.041 2.641 0.5 0.1 0.0 0.1 -1.4
100 0.659 2.641 0.8 0.2 0.1 0.6 -3.1
50 0.399 2.641 1.0 0.3 0.1 -- --
0 0 2.641 1.2 0.4 0.2 -- --

a Signed percent errors (%) of different theoretical methods relative to the accurate quantum results are given. b Reference 27.
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A. Asymmetric Double-Well Potential. We first present
the results for a particle of M ) 1224.259 au (atomic units)
in the one-dimensional asymmetric double-well potential

V(x)) b4x
4 + b2x

2 + b1x+ b0 (18)

where the four parameters have values of 0.01, -0.02, 0.005,
and 0.01514754 au, respectively. This test case has been used
by Mielke and Truhlar to validate their DPPI method based
on a three-point trapezoidal approximation of the potential
in the free-particle reference state.27 Results based on the
Doller-Myers approximation to the centroid potential27 are
also included for comparison (Table 1).

Key results are shown in Figure 1 which depicts the first
three orders of KP effective potential as a function of the
centroid variable x at 100 K, along with the original potential
energy. It is of interest to notice that for all three perturbation
levels, in the double-well regions, the path-integral centroid
potential has a higher energy than the corresponding original
potential energy primarily due to zero-point energy, whereas
at the barrier region, the centroid potential is lowered in
comparison with the original barrier, which may be attributed
to tunneling effects. Furthermore, Figure 1 shows that in the
double-well regions, the three perturbation results converge
exceptionally well, but a noticeable progression of energy
lowering effects is found at the barrier region. In fact, the
original maximum point at x ≈ 0 Å, in which the frequency
for the INM is imaginary, has become a local minimum at
the KP3 level purely due to quantum tunneling effects. Note
that for this one-dimensional case, the centroid potential is
equivalent to the centroid potential of mean force along the
position coordinate. Thus, if the potential of mean force is
used in path-integral quantum transition state theory
(PI-QTST),11,13,69,101,102 it seems that the lowest perturbation
level at KP1 may underestimate tunneling and could lead to
noticeable errors in rate calculations.

The quantum partition function and the corresponding free
energy from the Kleinert variational perturbation theory at
different temperatures are summarized in Table 1, along with
the results from the earlier studies.27 Note that the dominant
contribution to the partition function in the configuration
integral is from the centroid potential near the global
minimum (in which the INM frequencies are all real). This
is reflected in the good agreement among all three perturba-
tion levels (Figure 1 and Table 1). Furthermore, the absolute
values of the computed partition function have greater errors

in comparison with the accurate results than the correspond-
ing free energies due to the exponential relationship between
the two quantities. Consequently, the computed free energies
uniformly have smaller errors than the absolute partition
functions for all approximate methods. In the entire tem-
perature range that has been considered, the KP theory,
particularly at the KP2 and KP3 levels, consistently yields
the most accurate results among all methods listed in Table
1. The DDPI method slightly outperforms the GTFK
variational approach which is equivalent to KP1, but there
are significant errors at low temperatures. In this case, the
second- and third-order perturbation results are in excellent
agreement (99%) with accurate quantum results. At 50 K,
the KP1 value deteriorates significantly, whereas the results
obtained using KP2 and KP3 are still in good accord with
the accurate results. Interestingly, Mielke and Truhlar pointed
out that although the GTFK variational approach (KP1) is
the most accurate method that they have considered, the
method is too expensive for computing molecular partition
functions.27 In the present AIF-PI method, the path integrals
are determined analytically, which makes the daunting task
of path-integral simulation a trivial problem, allowing the
variational frequencies to be optimized quickly and efficiently.

An important property of the centroid potential is that at
the limit of zero-temperature the energy and position of the
global minimum correspond to, respectively, the ground-state
energy and the expectation value of position in the ground-
state determined by wave mechanics1,14,15,68

lim
Tf0

WT (xmin))E0 (19)

and

xmin ) 〈ψ0|x|ψ0〉 (20)

where x is the position operator, and xmin and WT (xmin) are,
respectively, the coordinate and value at the global minimum
of the centroid potential. In eq 19 and eq 20, ψ0 is the nuclear
ground-state wave function and E0 is the lowest eigenenvalue
of the Hamiltonian, i.e., the zero-point energy. We have
derived the closed-form expressions (Supporting Information)
for these quantities up to the KP1/P20, KP2/P20, and KP3/
P6 levels of theory, which can be evaluated at no additional
computational costs once the centroid potential is optimized.
In contrast, it would be extremely difficult to obtain
converged results at 0 K using Monte Carlo or molecular
dynamics path integral simulations. In the KP theory, the
quantum ground-state energy and the expectation value of
particle position can thus be obtained simply by performing
centroid potential energy minimizations.

Listed in Table 2 are the calculated ground-state energy
and the expectation value of position for the asymmetric
double-well potential from the KP theory. The estimated
zero-point energies are 2.672, 2.650, and 2.645 kcal/mol at
the KP1, KP2, and KP3 level of theory, respectively, which
represents errors of 1.18%, 0.35%, and 0.16% from the exact
value of 2.641 kcal/mol. The expectation value of the particle
position is shifted away from the coordinate at the minimum
of the original potential due to asymmetry of the potential.
The corresponding KP results are in remarkable agreement

Figure 1. Computed (mass-scaled) centroid potential at the
first- (W1), second- (W2), and third- (W3) order Kleinert
variational perturbation theory for an asymmetric double-well
potential (V) at a temperature of 100 K.
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with the accurate result, having errors only of 0.27%, 0.16%,
and 0.08% in comparison with the exact value of -0.52189
Å.

B. The Morse Potential for Bond Vibration. The Morse
potential80 is selected to model the bond vibrations of three
diatomic molecules: H2, HF, and HCl99,100

V(r))De[1- exp(-r- r0

γ )]2

(21)

where r is the bond length, r0 is the equilibrium distance,
De is the bond dissociation energy, and γ is a parameter
related to the harmonic frequency by ω0 ) (1/γ)√(2De⁄µ)
with µ being the reduced mass of a diatomic molecule. The
parameters for the three molecules are given in Table 3.99,100

We first examine the temperature dependence of the
quantum partition function Qqm from the bound states for
hydrogen fluoride using the KP theory. The computational
results obtained by using a tenth-order polynomial with 0.02
Å interpolation steps (P10-0.02A) for the Morse potential
at the KP1 and KP2 levels of theory are listed in Table 4,
along with the exact results for a temperature ranging from
50 to 1000 K. Good agreement is found between results from
KP1 or KP2 calculations and the exact values. Even at 50
K, the KP1 partition function is still within 75% of the exact
value (-25% error), while the KP2 theory shows a remark-
able 96.4% accuracy (-3.6% error). As noted above,
although the absolute partition function may show greater
errors due to the exponential dependence on the centroid
potential, the computed free energies are less sensitive as
illustrated in Table 4. For example, at the zero-temperature
limit, the computed free energies using KP1 and KP2 are
within 0.52% and 0.07% of the exact zero-point energy,
respectively.

In Tables 5 and 6, we summarize the computed zero-point
energies and bond length expectation values at the global
minima of the centroid potentials from both KP1 and KP2
levels of theory, along with the exact results. In all cases,
the agreement with the exact quantum data is excellent. For
H2, which is expected to have the largest quantum effects
due to its small reduced mass, the error in the computed
ground-state energy (lowest value in the centroid potential)
is only 0.15% at the KP2 level of theory. All calculated
expectation values of the bond length both at KP1 and KP2
levels are within 0.0001 Å of the exact quantum results,

which are two-order magnitude more accurate than the
classical equilibrium positions.

Figure 2 illustrates the KP1 and KP2 centroid potentials
at 200 K. It is interesting to note that approximately before
the inflection point of the original potential (in which the
INM frequencies are real), the computed centroid potentials
are above the original Morse potential, dominated by zero-
point vibrational effects, whereas approximately beyond the
inflection point (in which the INM frequencies are imagi-
nary), the centroid potentials are below the Morse potential.

To shed light on the relationship between KP theory and
the use of the harmonic frequency of the Morse potential in
approximating quantum energy as well as traditional (wave
function) perturbation and variational theories, we have
determined the harmonic zero-point energy (i.e., pω0/2), and
the ground-state energy using the Rayleigh-Ritz variational
approach,82-85 and the second-order Rayleigh-Schrödinger
perturbation theory.63,86,87 All results are also listed in Table
5. In the Rayleigh-Ritz method, the ground-state harmonic
eigenfunction centered at r0 is variationally optimized by
adjusting the Gaussian width a:

�̃(r)) 1

(2πa2)1⁄4
exp[- (r- r0)

2

4a2 ] (22)

The Rayleigh-Schrödinger perturbation was carried out up
to the second order, in which the excited states are
constructed by using the angular frequency Ω̃ deduced from
the Rayleigh-Ritz optimization

E(2) ) pΩ̃
2

+ 〈�̃0|V(r)- 1
2

µΩ̃2(r- r0)
2|�̃0〉 +

∑
k*0

|〈 �̃k|V(r)- 1
2

µΩ̃2(r- r0)
2|�̃0〉 |2

Ek -E0
(23)

where �̃0 is the wave function in eq 22 but with the optimized
Gaussian width a being optimized, Ω̃ ) p/2µa2, �̃k are the
eigenfunctions for the harmonic system with the angular
frequency Ω̃, and Ek are the eigenenergies pΩ̃(k+1/2).

In Table 5, the zero-point energies computed using pure
harmonic frequencies have errors greater than results both
from the KP1 and KP2 theory, suggesting anharmonicity
is indeed important for high frequency vibrations involving
hydrogen atoms. Surprisingly, the Rayleigh-Ritz varia-
tional approach performs worse than the harmonic ap-
proximation, and this may be attributed to the fact that
the location of the wave function is fixed at the minimum
of the Morse potential energy function. If the center of
the Gaussian wave function in eq 22 is also treated as a
variational parameter along with the width, the Rayleigh-
Ritz variational results reduces to the KP1 value at the
zero-temperature limit. Therefore, the variationally opti-

Table 2. Classical and Quantum Ground-State Energy (kcal/mol), and the Expectation Value of the Particle Position (Å) in
an Asymmetric Double-Well Potential along with the Minimum Energy of the Centroid Potential and Position from the First
Three-Order of the Kleinert Variational Perturbation Theory

ground state classical accurate quantum KP1 KP2 KP3

energy 0 2.641 2.672 2.650 2.645
〈x〉 -0.55958 (xmin) -0.52189 -0.52329 -0.52272 -0.52231

Table 3. Parameters of the Morse Potential for Hydrogen
Chloride, Hydrogen Fluoride, and Hydrogen Molecules

molecule De (kcal/mol) r0 (Å) γ (Å)

HCla 106.48594 1.274577 0.535536
HFb 136.30000 0.916600 0.452243
H2

a 109.48232 0.741589 0.514992

a Reference 99. b Reference 100.
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mized position of the Rayleigh-Ritz wave function may
be interpreted as the centroid position in path integrals.1,67-69

The deficiency without optimizing the location of the trial
wave function is partially recovered by the second-order
Rayleigh-Schrödinger perturbation theory (Table 5), which
has an accuracy between KP1 and KP2. Although it is
tempting to optimize the center of the wave functions �̃k

used in Rayleigh-Schrödinger perturbation theory, this is
not possible because the perturbation theory is not a
variational method. Nevertheless, for a symmetric potential,
Kleinert showed that at the zero-temperature limit, the KP
theory is identical to the Rayleigh-Schrödinger perturbation
theory, provided that the global minimum point in the centroid
potential is chosen as the center of the wave function.1 In
general, Kleinert’s variational perturbation theory resembles the
combined features of both the Rayleigh–Ritz variational method
and the Rayleigh–Schrödinger perturbation theory in wave
mechanics.

C. Symmetric and Asymmetric Eckart Potentials. The
Eckart potential81,103 (Supporting Information) is a popular
model for testing a rate theory for chemical reactions because
the quantum result is known exactly. Since the reactant and
product states are unbound free particles, which have
identical classical and quantum partition functions, the
difference between classical and quantum rate constants for
the Eckart potential is entirely due to tunneling. Often,
quantum tunneling effect88,89 is expressed as the ratio of the
quantum rate constant to that of classical transition state
theory104 (TST)

κ)
kqm

kTST
) �e�Vmax∫0

∞
γ(E)e-�EdE (24)

where kqm and kTST are the quantum and TST rate constants,
and γ(E) is the transmission probability at energy E, which
can be determined exactly for the Eckart potential (Support-
ing Information), and Vmax is the barrier height. κ is called
the quantum tunneling correction factor or transmission
coefficient.103 In path-integral quantum transition state theory

Table 4. Classical and Quantum Canonical Partition Functions, and Free Energies of the Morse Potential for Hydrogen
Fluoride at Various Temperaturesa

T (K) classical quantum KP1/P10-0.02A KP2/P10-0.02A

Canonical Bound Partition Function
1000 1.73E-01 5.61E-02 -0.2 0.0
500 8.61E-02 3.12E-03 -1.0 0.0
400 6.88E-02 7.38E-04 -1.8 0.0
300 5.16E-02 6.67E-05 -3.0 -0.1
200 3.44E-02 5.45E-07 -5.1 -0.4
100 1.72E-02 2.97E-13 -12.1 -1.3
50 8.58E-03 8.84E-26 -24.9 -3.6

Free Energy (kcal/mol)
1000 3.486 5.724 0.1 0.0
500 2.436 5.733 0.2 0.0
400 2.127 5.732 0.2 0.0
300 1.767 5.732 0.3 0.0
200 1.340 5.732 0.4 0.0
100 0.807 5.732 0.4 0.0
50 0.473 5.732 0.5 0.1
0 0 5.732 0.5 0.1

a Signed percent errors (%) of different theoretical methods relative to the accurate quantum results are given.

Table 5. Computed Ground State Energies (kcal/mol) for Hydrogen Chloride, Hydrogen Fluoride, and Hydrogen Molecules
from the Morse Potential Using the Harmonic Approximation, Rayleigh-Ritz (RR) Variational Approach, Second-Order
Rayleigh-Schrödinger Perturbation Theory (RS2), and First and Second Orders of the Kleinert Variational Perturbation
Theory (KP1 and KP2)

molecule quantum harmonic RR RS2 KP1/P10-0.02A KP2/P10-0.02A

HCl 4.231 4.274 4.348 4.238 4.253 4.234
HF 5.732 5.793 5.899 5.742 5.762 5.736
H2 6.193 6.284 6.437 6.213 6.238 6.202

Table 6. Computed Expectation Value of Particle Position
and the Minimum Centroid Potential Coordinate (Å) for H2,
HF, and HCl Using KP1 and KP2 Theorya

molecule classical quantum KP1/P10-0.02A KP2/P10-0.02A

HCl 1.274577 1.29094 1.29086 1.29089
HF 0.916600 0.93124 0.93117 0.93121
H2 0.741589 0.76423 0.76409 0.76416

a The equilibrium bond distances of the original (classical)
potential are also given.

Figure 2. The first- and second-order (mass-scaled) centroid
potentials (W1 and W2) from the KP theory compared with
the Morse potential (V) for hydrogen fluoride as a function of
the centroid bond length at 200 K.
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(PI-QTST),11,13,69,101,102 κ is approximated as follows (when
there is no correction for recrossings)

κ ≈ exp[-�(Wmax -Vmax)] (25)

where Wmax is the maximum energy of the centroid potential
at the PI-QTST transition state. Note that Wmax is not
necessarily located at the same position as Vmax (e.g., Figure
3 and Table 10), although all Wmax we found are in the region
where the INM frequencies are imaginary. In this study, we
consider both the symmetric and asymmetric situations and
compare the KP results with those from previous studies.

For the symmetric Eckart potential, we used a set of
parameters corresponding to a protium tunneling through a
barrier of Vmax ≈ 5.7 kcal/mol with an angular frequency of
ω/ ) 1047.2 cm-1 at the top of the barrier (Supporting
Information). This set of parameters has been widely used
both in analytic theories and in path integral Monte Carlo
(PIMC) simulations.40,69,103 Table 7 summarizes the com-
puted quantum correction factor κ using the present KP1 and
KP2 theory, along with results obtained from a diagrammatic
approach by Cao and Voth (CV),40 and from PIMC simula-
tions.69 Due to symmetry, Wmax is located at the same
position as Vmax. The theoretical approach used in the Voth-
Chandler-Miller paper69 (VCM) yields identical results as
that from KP1 or the GTFK variational approach, whereas
the diagrammatic method of Cao and Voth is similar to KP2
without variational optimization of the angular frequency.
In our study, we have used a 20th-order polynomial
(P20-0.2A) representation of the Eckart potential, fitted in
the region of x0 ( 2 Å. Using this interpolated polynomial
potential, the KP1 results are nearly identical to those
obtained by Voth at al. without using potential interpola-
tion.69 Hence, the computational accuracy by P20-0.2A
representation is clearly reasonable in the present calculations.

In comparison with the exact results, the KP1 theory shows
noticeable deviations at low temperature, while the results
obtained using the KP2 theory, the CV approach, and the
PIMC simulation are all very accurate even at a temperature
as low as 126 K (Table 7).

Moreover, we list the computed kinetic isotope effects89,105

(KIE) for protium and deuterium transfer reactions at the
KP1 and KP2 levels in Table 8, which are compared with
values obtained previously with PIMC simulations (Sup-
porting Information).100 A similar trend is observed in that
although only the KP2 theory is accurate at lower temper-

atures, at room temperature, and above, both KP1 and KP2
perform very well in comparison with PIMC simulations and
the exact data.

We now turn our attention to the asymmetric Eckart
potential (Supporting Information) which has been used by
Jang et al.101 (ω/≈340 cm-1) to test the PI-QTST.11,13,69,101,102

Table 9 shows that good accord is obtained between the PI-
QTST quantum correction factor from path-integral molec-
ular dynamics (PIMD) simulations and the present pertur-
bation result, particularly at the KP2 level of theory. It is
interesting to notice that at low temperature, both the PI-
QTST simulation and the KP theory overestimate the
tunneling effect (Table 9), whereas it is underestimated for
the symmetric potential (Table 7). We attribute the difference
in the asymmetric Eckart potential to the inclusion of energy
E smaller than the reaction energy A in calculating the
centroid potential, though there is no contribution to tunneling
transmission γ(E) for energy less than A (Supporting
Information). This discrepancy may be resolved by integrat-
ing only the closed paths in which the quantum-statistical
action A[x(τ)] is larger than or equal to A in the centroid
potential calculations:

W(x0))-kBT ln[� 2πp2

MkBT
I D[x(τ)]δ(x- x0)|AgA ×

exp{-A[x(τ)] ⁄ p}] (26)

Jang et al.101 proposed a way to alleviate this problem by
shifting the lower energy region of the asymmetric potential
to match the high energy asymptotic value, i.e., by effectively
using a less asymmetric potential.

In Table 10, we report the xmax values, at which the
centroid potential is at the maximum, at different tempera-
tures. The xmax values correspond to the PI-QTST saddle
point (or transition state), which is shifted away from the
position of the original barrier. At 61 K, xmax deviates from
the classical transition state by more than 0.2 Å.

D. Optimization of the Variational Frequency. Both the
nth-order centroid potential Wn

Ω and the associated optimal
frequency Ωopt,n are functions of the centroid position x0 and
temperature T. As n tends to infinity, Wn

x0,T (Ω) becomes
independent of Ω, and Wn

x0,T (Ω) is exact. This, in fact,
provides a variational procedure for determining Wn

x0,T (Ω)
on the basis of least dependence on Ω (Section 2).1 Thus, at
a given position x0 and temperature T, we have the centroid
potential Wn

x0,T (Ω) as a function of Ω. The optimal value
Ωopt,n(x0,T) is at the Wn

x0,T (Ω) minimum or is located at the
point that Wn

x0,T (Ω) has the least Ω-dependence if a
minimum does not exist, i.e., the second derivative is zero.
The latter corresponds to an inflection point (Section 2). In
this section, we examine some features of the optimal value
of the variational parameter Ωopt,n(x0,T) at different perturba-
tion levels and the dependence of the centroid potential on
Ω at different temperatures. All discussions are based on
the asymmetric double-well potential discussed in Section
5A.

Figure 4 shows the square of the optimal variational
frequencies Ωopt,n(x0,T), where n ) 1, 2, and 3, along the

Figure 3. Comparison of the mass-scaled KP1 (W1) and KP2
(W2) centroid potentials with the corresponding Eckart poten-
tial (V) near the barrier top at 82 K.
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coordinate position at 100 K, which are used to determine
the corresponding centroid potentials at the three perturbation
levels. First, Ωopt,n(x0,T) can be either a real or an imaginary
quantity, depending on the potential surface, the coordinate
position, and temperature. For the KP1 theory, the variational
frequency is imaginary in the barrier region of the double-
well potential, whereas Ωopt,3(x0,100 K) has real values
throughout. Interestingly, for an extended range around x0

) 0, Ωopt,2(x0,100 K) has an optimal value of zero. In Figure
5, we focus on a given centroid position at x0 ) 0 and T )
100 K and illustrate the dependence of the three KP centroid
potentials on the variational frequency Ω. In this figure, the
imaginary axis of Ω is represented by the negative axis
(Note: Wn

x0,T (Ω) is an even function of Ω.). In this case, the

optimal frequency is imaginary for W1 with a value of
5.35694 × 1013i s-1, real for W3 with a value of 3.78053 ×
1013 s-1, and zero s-1 for W2. For reference, the INM
frequency at x0 ) 0 is imaginary, with a value of 2.36308 ×
1014i s-1.

Figure 6 depicts the Ω-dependence of Wn
x0,T (Ω) at x0 )

-0.55958 Å (in which the original potential [eq 18] is at
the global minimum) for three different temperatures: T )
500, 386, and 100 K. Under these conditions, the optimal
values of the variational frequency are all real, and we see
that the change in the centroid potential becomes less
sensitive at a higher order perturbation when Ω is large (i.e.,
greater than the optimal value). Furthermore, the KP2
centroid potential exhibits an inflection point rather than a
minimum as a function of Ω in all three temperatures because
of the alternating signs in the cumulant expansion for even-
order terms in the KP theory (Section 2).1,5,70 These
observations are consistent with those described by Kleinert
in ref 1.

In contrast to the large value of Ω, when Ω is small, at
lower temperatures the centroid potential becomes more

Table 7. Computed Quantum Transmission Coefficient κ for the Symmetric Eckart Barrier at Various Temperaturesa,b

κ

�pω* T (K) exact KP1/P20-0.2A KP2/P20-0.2A VCM Cao-Voth PIMC

2 753 1.224 1.169 1.169 1.2 -- 1.2
3 502 1.525 1.419 1.420 1.4 -- 1.4
4 377 2.071 1.870 1.872 1.9 -- 1.9
5 301 3.102 2.696 2.708 2.7 -- 2.7
6 251 5.199 4.283 4.353 4.4 4.4 4.4
8 188 21.77 14.71 16.39 15.0 17.0 17.0
10 151 161.9 74.29 112.0 73.0 110.6 105.0
12 126 1973 514.6 1484 514.0 1278.0 1240.0

a Reference 69. b Reference 40.

Table 8. Kinetic Isotope Effects (KIE) on the Protium and
Deuterium Transfer over the Symmetric Eckart Potential at
Various Temperatures

KIE (protium/deuterium)

T (K) exact KP1/P20-0.2A KP2/P20-0.2A PIMCa

500 1.232 1.186 1.186 1.19
400 1.374 1.306 1.307 1.31
350 1.511 1.421 1.423 1.43
300 1.756 1.623 1.630 1.62
250 2.283 2.036 2.068 2.08
200 3.840 3.110 3.328 3.33
150 12.17 7.206 10.29 11.10b

a Reference 100. b Computed in this work using the same PIMC
program in ref 100.

Table 9. Transmission Coefficient κ for the Asymmetric
Eckart Barrier at Various Temperatures

κ

�pω* T (K) exact KP1/P20-0.2A KP2/P20-0.2A PIMDa

2 245 1.195 1.178 1.178 1.17
4 122 2.019 1.985 1.989 1.97
6 82 5.387 5.528 5.668 5.69
8 61 27.27 31.55 35.39 36.6

a Reference 101.

Table 10. Temperature Dependence of xmax of the
Asymmetric Eckart Barrier

xmax (Å)

�pω* T (K) classical KP1/P20-0.2A KP2/P20-0.2A

2 245 -0.28645 -0.30814 -0.30813
4 122 -0.28645 -0.33691 -0.33687
6 82 -0.28645 -0.39049 -0.39212
8 61 -0.28645 -0.48334 -0.49329

Figure 4. The Ωopt,1
2 (x), Ωopt,2

2 (x), and Ωopt,3
2 (x) for the mass-

scaled asymmetric double-well potential at T ) 100 K.

Figure 5. W1
x0,T (Ω), W2

x0,T (Ω), and W3
x0,T (Ω) at x0 ) 0 and T

) 100 K for the asymmetric double-well potential. Note that
the imaginary axis of Ω is represented by the negative axis.
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sensitive at higher order perturbations (Figure 6). At the limit
of zero-Ω (analytical expressions for zero-Ω limit are
available in the Supporting Information), the centroid
potential corresponds to that using a free-particle reference
frame, which is the framework used in the Feynman-Hibbs
approach.8 In this limit, the perturbative inter-action in the
KP theory [i.e., Vint

x0 in eq 15 or Aint
x0 in eq 9] is the original

potential itself. In Figure 7, the centroid potential at zero-Ω
limit is shown as a function of temperature at x0 ) -0.55958
Å for the first three orders of KP theory. W1 and W3 coincide
at temperature of 386 K. Although the results converge in
the high-temperature limit, they diverge at lower tempera-
tures. This behavior suggests that (not surprisingly) the free-

particle reference state is not particularly a good choice in a
general perturbation expansion.

6. Concluding Remarks

The Kleinert variational perturbation theory is a systematic,
fast convergent method for treating internuclear quantum
effects in molecular systems. In the KP theory, the angular
frequency Ω for a harmonic reference state is variationally
optimized at a given centroid position x0 and temperature T,
and the exact quantum partition function is obtained by
systematically incorporating anharmonic corrections to the
centroid potential of this reference system. Despite the
numerous attractive features of the KP theory, it has not been
used in chemical applications beyond the first-order perturba-
tion, i.e., the so-called Giachetti-Tognetti-Feynman-Kleinert
(GTFK) variational approach. The primary drawback is the
need to optimize the variational frequency, which becomes
an n × n matrix, by path-integral calculations. The coupled
path-integral effective potential optimization and evaluation
of Gaussian smearing functions in the KP theory is a daunting
computational task, and only until very recently, a practical
procedure has been devised for condensed phase simulations
at the KP1 level of theory.77,78 Making use of the instanta-
neous normal mode approximation, which reduces a system
of 3N degrees of freedom (where N is the number of
particles) to 3N one-dimensional problems, we have devel-
oped an analytical method to obtain the centroid potential
as a function of the variational parameter in the KP theory,59

avoiding numerical path-integral Monte Carlo or molecular
dynamics simulations, especially at the zero-temperature
limit. Consequently, the variational procedure in the KP
theory can be efficiently carried out, and, thus, higher order
perturbations can be performed for realistic chemical ap-
plications. Previously, we have demonstrated that in the INM
approximation, the AIF-PI method is still accurate for
computing the quantum partition function of a water
molecule (3 degrees of freedom) and the quantum correction
factor for the reaction rate of the collinear H3 reaction (2
degrees of freedom).59

In the present study, we further test the accuracy and
properties of KP theory by using the first three-order
perturbations to determine the zero-point energy, quantum
partition function, and tunneling factor for systems including
an asymmetric double-well potential, the bond vibrations of
H2, HF, and HCl represented by the Morse potential, and a
hydrogen-transfer barrier modeled by the Eckart potential.
The following general conclusions are drawn from these
calculations:

(1) Kleinert’s variational perturbation theory is an ex-
tremely accurate method for treating internuclear quantum-
statistical effects and for obtaining path-integral centroid
potentials. Although the lowest (first-order) level perturbation
theory, KP1, which is identical to the GTFK variational
method, shows noticeable deviations (by more than 25%)
from the exact quantum results (including the partition
function and tunneling factor), at temperatures below 100
K, the second- and third-order perturbations, KP2 and KP3,
remain accurate, within 96% of the exact values for all
systems considered.

Figure 6. W1
x0,T (Ω), W2

x0,T (Ω), and W3
x0,T (Ω) at x0 ) -0.55958

Å and (a) T ) 500 K, (b) T ) 385.96 K, and (c) T ) 200 K for
the asymmetric double-well potential.

Figure 7. Temperature-dependence of W1
x0(Ω ) 0), W2

x0(Ω
) 0), and W3

x0(Ω ) 0) at x0 ) -0.55958 Å for the asymmetric
double-well potential.
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(2) Using our newly derived analytical results (Supporting
Information), the minimum value of the centroid potential
at the zero-temperature limit is in excellent agreement with
the ground-state energy (zero-point energy), and the position
of the centroid-potential minimum is the expectation value
of particle position in wave mechanics.

(3) In comparison with the Rayleigh-Ritz (RR) variational
approach and the Rayleigh-Schrödinger (RS) perturbation
theory in wave mechanics, the results from the KP theory
in path-integral quantum mechanics combine both features
of RR variation (optimization of both the center and width
of wave function) and RS perturbation that includes dynamic
correlations. Consequently, the Kleinert perturbation theory
converges exceedingly fast, and the KP2 level of theory can
yield accurate results for computing kinetic isotope effects
in chemical reactions.59

(4) Finally, the centroid potential obtained from the Kleinert
perturbation calculations can be used in combination with path-
integral quantum transition state theory (PI-QTST) to estimate
the rate constant of chemical reactions and can be applied to
condensed phase systems and enzymatic processes.
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Abstract: Complex forms of nitrogen are of interest due to their potential as high-energy
materials. Many forms of nitrogen, including open-chain and cage molecules, have been studied
previously. While many all-nitrogen molecules Nx have been shown to be too unstable for high-
energy applications, it has been shown that certain heteroatoms (including carbon) can stabilize
a nitrogen structure. A molecule that is not 100% nitrogen will be less energetic, but that energy
loss is a tradeoff for the improved stability. In this study, open-chain N4C2 (70% nitrogen by
mass) isomers are studied by theoretical calculations to determine isomer stability and
dissociation energies. Calculations are carried out with density functional theory (PBE1PBE),
perturbation theory (MP2), and coupled-cluster theory (CCSD(T)). Trends in stability of the
molecules are calculated and discussed.

Introduction

Nitrogen molecules have been the subjects of many recent
studies because of their potential as high energy density
materials (HEDM). An all-nitrogen molecule Nx can undergo
the reaction Nxf (x/2)N2, a reaction that can be exothermic
by 50 kcal/mol or more per nitrogen atom.1,2 To be a
practical energy source, however, a molecule Nx would have
to resist dissociation well enough to be a stable fuel.
Theoretical studies3–7 have shown that numerous Nx mol-
ecules are not sufficiently stable to be practical HEDM,
including cyclic and acyclic isomers with eight to twelve
atoms. Cage isomers of N8 and N12 have also been shown7–10

by theoretical calculations to be unstable. Experimental
progress in the synthesis of nitrogen molecules has been very
encouraging, with the N5

+ and N5
- ions having been recently

produced11,12 in the laboratory. More recently, a network
polymer of nitrogen has been produced13 under very high
pressure conditions. Experimental successes have sparked
theoretical studies1,14,15 on other potential all-nitrogen mol-
ecules. More recent developments include the experimental
synthesis of high energy molecules consisting predominantly
of nitrogen, including azides16,17 of various molecules and
polyazides18,19 of atoms and molecules, such as 1,3,5-
triazine. Future developments in experiment and theory will
further broaden the horizons of high energy nitrogen research.

The stability properties of Nx molecules have also been
extensively studied in a computational survey20 of various
structural forms with up to 20 atoms. Cyclic, acyclic, and
cage isomers have been examined to determine the bonding
properties and energetics over a wide range of molecules. A
more recent computational study21 of cage isomers of N12

examined the specific structural features that lead to the most
stable molecules among the three-coordinate nitrogen cages.
Those results showed that molecules with the most pentagons
in the nitrogen network tend to be the most stable, with a
secondary stabilizing effect due to triangles in the cage
structure. A recent study22 of larger nitrogen molecules N24,
N30, and N36 showed significant deviations from the pentagon-
favoring trend. Each of these molecule sizes has fullerene-
like cages consisting solely of pentagons and hexagons, but
a large stability advantage was found for molecules with
fewer pentagons, more triangles, and an overall structure
more cylindrical than spheroidal. Studies23,24 of intermediate-
sized molecules N14, N16, and N18 also showed that the cage
isomer with the most pentagons was not the most stable cage,
even when compared to isomer(s) containing triangles (which
have 60° angles that should have significant angle strain).
For each of these molecule sizes, spheroidally shaped
molecules proved to be less stable than elongated, cylindrical
ones.

However, while it is possible to identify in relative terms
which nitrogen cages are the most stable, it has been shown7* Corresponding author. E-mail: dstrout@alasu.edu.
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in the case of N12 that even the most stable N12 cage is
unstable with respect to dissociation. The number of studies
demonstrating the instability of various all-nitrogen molecules
has resulted in considerable attention toward compounds that
are predominantly nitrogen but contain heteroatoms that
stabilize the structure. In addition to the experimental
studies16–18 cited above, theoretical studies have been carried
out that show, for example, that nitrogen cages can be
stabilized by oxygen insertion25,26 or phosphorus substitu-
tion.27

A study28 of carbon-nitrogen cages showed that carbon
substitution into an N12 cage results in a stable N6C6H6, but
the only isomer considered was one in which the six carbon
atoms replaced the nitrogen atoms in the two axial triangles
of the original N12. A further study29 of several isomers of
N6C6H6 showed that, for substitutions of C-H bonding
groups into an N12 cage, the most stable isomers were the
ones with the largest number of C-N bonds. Also, the
isomers with the highest number of C-N bonds also had
the highest dissociation energies in the N-N bonds, which
is significant because the N-N were weaker than other bonds
in the cage. The strength of the N-N bonds, therefore, plays
a key role in the overall stability of the molecules with
respect to dissociation. Similar studies30 have been carried
out for cage isomers of N8C8H8.

In the current study, a similar idea is applied to open-
chain molecules rather than cages. Isomers of open-chain
N4C2 are studied as two carbon atoms are substituted into
the structure of open-chain N6. Variations in the placement
of the two carbon atoms are considered and discussed. For
nomenclature purposes, each isomer shall be named accord-
ing to the positions of the two carbons. “Isomer 12”, for
example, shall refer to a chain of six atoms with positions 1
and 2 occupied by carbon and the rest nitrogen atoms. The
energies of these isomers are calculated with respect to each
other and with respect to plausible dissociation products,
thereby giving a measure of stability with respect to
dissociation.Figure 1.

Computational Methods

Geometries are optimized with second-order Moller-Plesset
perturbation theory31 (MP2) and density functional theory32

(PBE1PBE). Single energy points are calculated with coupled-
cluster theory33 (CCSD(T)). Each molecule in this study is
calculated in its own ground state, which is the singlet for
N4C2 but not necessarily the singlet for all dissociation
products. The correlation-consistent basis sets34 of Dunning
are used, including double-� (cc-pVDZ), augmented double-�
(aug-cc-pVDZ), and triple-� (cc-pVTZ). The Gaussian 03
computational chemistry software35 and Windows counter-
part Gaussian 03W are used for the calculations in this study.

Results and Discussion

Isomer stability trends. Open-chain N4C2 has nine
structural isomers, designated by the carbon positions as
isomers 12, 13, 14, 15, 16, 23, 24, 25, and 34, respectively.
PBE1PBE, MP2, and CCSD(T) relative energies with the
cc-pVDZ for the nine isomers are shown in Table 1. Two

trends in stability appear in the data. The primary trend
appears to be a disfavoring of isomers with a carbon atom
on the end of the chain. Most of the isomers with a carbon
on the end are at the high end of the energy range, and even
isomer 15 is much less stable than the structurally similar
isomer 25. Mulliken charges shown in Table 1 show a
correlation between stability and the charges on the carbon
atoms. Carbon bonded to nitrogen will typically take a
positive partial charge because of differences in electrone-
gativity, but carbon on the end of the N4C2 chain tends to
take on a partial negative charge. (If the atom on the end of
the chain has a triple bond and a lone pair, this leads to
neutral nitrogen but negative carbon.) The positive charges
on carbon in isomer 25, and their interactions with neighbor-
ing negative nitrogen, stabilize isomer 25 and cause it to be
the most stable N4C2 chain.

The secondary trend is a disfavoring of isomers with
neighboring carbon atoms. Isomers with neighboring carbon
atoms have one carbon-carbon bond, two carbon-nitrogen
bonds, and two nitrogen-nitrogen bonds. Isomers without
neighboring carbon atoms have zero carbon-carbon bonds,
four carbon-nitrogen bonds, and one nitrogen-nitrogen

Figure 1. (a) N4C2 isomer 25 (C2h point group symmetry).
(b) N4C2 isomer 23 (Cs point group symmetry). (c) N4C2 isomer
15 (Cs point group symmetry). Carbon atoms are shown in
black; nitrogen atoms are in white.

Table 1. PBE1PBE, MP2, and CCSD(T)/MP2 Relative
Energies with the cc-pVDZ Basis Set for Isomers of
Open-Chain N4C2 (Energies in kilocalories/mole)a

isomer PBE1PBE MP2 CCSD(T)/MP2
carbon
charges

25 0.0 0.0 0.0 +0.19, +0.19
23 +28.0 +31.9 +33.2 +0.02, -0.03
15 +29.3 +34.9 +30.2 -0.03, +0.18
34 +34.4 +35.9 +42.6 -0.31, -0.31
13 +42.0 +49.8 +47.7 -0.09, +0.02
14 +43.4 b -0.11, +0.02
16 +61.4 +71.8 +63.1 -0.04, -0.04
12 +92.0 +106.3 +100.4 -0.15, +0.08
24 b

a Mulliken charges on the carbon atoms are included.
b Optimization was dissociative (loss of N2).
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bond. Therefore, the introduction of neighboring carbon
results in the replacement of two carbon-nitrogen bonds with
carbon-carbon and nitrogen-nitrogen bonds. That replace-
ment results in a net reduction in bond enthalpy and a net
loss in overall stability. The least stable isomer in this study,
isomer 12, has both destabilizing features; one carbon is on
the end of the chain, and the two carbon atoms are neighbors.

Cis-Trans Isomers. From a chemical point of view,
isomers 25, 15, and 16 can be viewed as azo compounds
because of the central NsN bonding group, but do these
compounds really have the structure of azo compounds? The
Lewis diagram of isomer 25, for example, would show a
central NdN double bond, CsN single bonds to the azo
bonding group, and chain terminal CsN triple bonds in the
cyano groups. Modeling these bonds by, respectively, trans-
N2H2, methylamine, and HCN yields bond lengths of 1.239
Å for NdN, 1.454 Å for CsN single bond, and 1.156 Å for
CsN triple bond, at the PBE1PBE/cc-pVDZ level of theory.
The corresponding bond lengths for isomer 25 are 1.259 Å
for NdN (slightly elongated), 1.355 Å for CsN single bond
(significantly shortened), and 1.165 Å for CtN triple bond
(slightly elongated). Since the shortening of the CsN single
bonds is likely the result of resonance delocalization from
conjugated π-bonds, the structure of isomer 25 is very
consistent with a trans-azo compound with cyano bonding
groups.

This opens the possibility of cis-trans isomerism with
respect to the cyano and isocyano bonding groups attached
to the azo center. All of the energies in Table 1 involve trans
isomers of 25, 15, and 16. However, to verify that these trans
isomers are the most stable form, cis isomers have been
optimized with the PBE1PBE/cc-pVDZ method, and the
results are shown in Table 2. The calculations confirm that
the trans isomers are, in fact, more stable than their cis
counterparts, by an amount of energy that follows the stability
of the isomers themselves. The most stable isomer, 25, has
a cis-trans gap of 4.3 kcal/mol, whereas the highly unstable
isomer 16 has a cis-trans gap of less than 1 kcal/mol.

What happened to isomer 24? The arguments in favor
of the stability of isomer 25, namely, the lack of chain-
terminal carbon and the lack of carbon-carbon bonds, should
apply equally well to isomer 24. Yet, no data exists for
isomer 24 by reason that its PBE1PBE/cc-pVDZ geometry
optimization failed. Since the optimization problem was the
uncontrolled lengthening of the bond between atoms 4 and
5, detaching N2 from the end of the chain, a more detailed
study of this bond was conducted. A series of PBE1PBE/
cc-pVDZ optimizations was carried out with frozen values
for the 4-5 bond ranging from 1.30 to 1.55 Å. The optimized
energies from these calculations are comparable to the most
stable isomers in this study, but in all cases, the first

derivative of the energy with respect to the 4-5 bond
indicated an energetic preference for lengthening. Therefore,
in a totally unconstrained optimization, this bond will
lengthen indefinitely without finding a bound local minimum.

Dissociation Energies. The three most thermodynamically
stable isomers, namely 25, 15, and 23, are subjected to
dissociation studies, and the results are shown in Tables 3,
4 and 5 for isomers 25, 23, and 15, respectively. (Both binary
and trinary dissociations are included, because of complete-
ness and because the CN3 dissociation product itself dis-
sociated to CN and N2 anyway upon optimization.) CCSD(T)/
MP2 predicts lower dissociation energies than MP2, and in
most cases, basis set effects cause small increases in
dissociation energy. Generally speaking, the PBE1PBE
dissociation energies are more accurate than MP2, as
compared to CCSD(T). Isomer 23 has a very exothermic
dissociation (N4C2 f NC2N + N2) whereby the molecule
loses N2 from the end of the chain. This behavior is similar
to previously studied behavior of all-nitrogen chains. All-
nitrogen chains lose N2 very easily, which is why they are
kinetically unstable. Isomer 23 is similarly unstable with

Table 2. Cis-Trans Energies for N4C2 Isomers 25, 15, and
16 Calculated with the PBE1PBE/cc-pVDZ Method
(Relative Energies in kilocalories/mole)

isomer trans cis

25 0.0 +4.3
15 0.0 +2.6
16 0.0 +0.6

Table 3. Dissociation Energies of N4C2 Isomer 25
(Energies in kilocalories/mole)

products

NCN2

+ CN
NCN +

NCN
CN + CN

+ N2

PBE1PBE cc-pVDZ +85.8 +61.0 +87.6
MP2 cc-pVDZ +110.9 +113.8 +100.4
CCSD(T)/MP2 cc-pVDZ +83.4 +63.3 +65.7
MP2 aug-cc-pVDZ +105.6 +117.7 +102.9
CCSD(T)/MP2 aug-cc-pVDZ +77.5 +65.4 +68.5
MP2 cc-pVTZ +107.2 +121.0 +104.8
CCSD(T)/MP2 cc-pVTZ +81.0 +69.9 +71.8

Table 4. Dissociation Energies of N4C2 Isomer 23
(Energies in kilocalories/mole)

Products

NC2N
+ N2

NC2

+ N3

CN + CN
+ N2

PBE1PBE cc-pVDZ -87.8 +92.4 +59.6
MP2 cc-pVDZ -111.8 +129.5 +68.5
CCSD(T)/MP2 cc-pVDZ -108.0 +93.7 +32.5
MP2 aug-cc-pVDZ -109.2 +133.1 +71.0
CCSD(T)/MP2 aug-cc-pVDZ -105.2 +96.1 +35.7
MP2 cc-pVTZ -109.6 +121.0 +73.2
CCSD(T)/MP2 cc-pVTZ -106.4 +97.3 +39.3

Table 5. Dissociation energies of N4C2 isomer 15
(Energies in kilocalories/mole)

products

NCN2

+ CN
NCN +

CN2

CN + CN
+ N2

PBE1PBE cc-pVDZ +56.5 +59.4 +58.3
MP2 cc-pVDZ +76.0 +101.5 +65.5
CCSD(T)/MP2 cc-pVDZ +53.2 +62.8 +35.5
MP2 aug-cc-pVDZ +70.7 +105.6 +67.9
CCSD(T)/MP2 aug-cc-pVDZ +47.3 +64.9 +38.3
MP2 cc-pVTZ +72.6 +109.0 +70.2
CCSD(T)/MP2 cc-pVTZ +50.5 +69.0 +41.4
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respect to dissociation and is therefore not likely to hold
promise as a high-energy material.

Isomers 25 and 15 have dissociation processes that are
all endothermic, meaning that these molecules have more
resistance to dissociation than isomer 23. For isomer 15, the
lowest energy dissociation involves the loss of one or both
CN units from the end of the molecule. CCSD(T)/MP2
predicts that dissociation of isomer 15 costs at least 40-50
kcal/mol of energy, and therefore, isomer 15 may have
potential as high-energy material. The stability of isomer 25
is even greater than that of isomer 15, with all dissociations
requiring at least 70 kcal/mol at the CCSD(T)/cc-pVTZ level
of theory. Because of the structural similarities between
isomers 25 and 15, most of the dissociation products are the
same for the two molecules. The greater kinetic stability of
isomer 25 versus isomer 15, reflected in Tables 2 and 3, is
a direct result of the greater thermodynamic stability shown
in Table 1.

Detonation Energies. Detonation energies of the mol-
ecules are calculated36 as the energy released by the reaction
N4C2f 2N2 + 2C (graphite). Since N2 and graphitic carbon
are the most stable allotropes of the products, these detona-
tion energies also indicate the heats of formation of the N4C2

chains. The energies for isomers 25, 23, and 15 are shown
in Table 6. Since all these reactions lead to the same products,
the differences in energy are the same as the differences in
stability shown in Table 1. A CCSD(T)/cc-pVDZ estimate,
based on the model reaction 2HCN + N2H4f 3H2 + N4C2,
of the heat of formation37 of isomer 25 predicts a value of
154 kcal/mol, as compared with the 133 kcal/mol in Table
6, possibly indicating that the values in Table 6 are
underestimating the detonation energy.

Since isomer 25 has the lowest energy (most stable) to
start with, it has the lowest energy of detonation. According
to Table 6, isomer 25 has the ability to release about 1.7
kcal/g, while isomers 23 and 15 have an energy release of
about 2 kcal/g. The energy release occurs principally because
of the formation of N2, so the fact that the molecules are
70% nitrogen by mass is a favorable energetic property.
These detonation energies are comparable to, for example,
the previously studied N6C6H6 cages.29 The difference
between these open chains and previously studied cages is
that the cages have single bonds, whereas the open chains
have double and triple bonds, which are less energetic upon
decomposition to N2. That is why open chains that are 70%
nitrogen have about the same detonation energy as cages
that are slightly more than 50% nitrogen. If stable open

chains can be found that are even richer in nitrogen, the
energetic properties will improve accordingly.

Conclusion

N4C2 is an example of a carbon-substituted nitrogen chain
that could hold promise as a high-energy material, but there
are important considerations in the design of such a molecule
for optimal high-energy properties. Carbon atoms should be
distributed along a chain such that no C-C bonds occur,
but the carbon atoms should not occupy chain-terminal
positions. On the other hand, chain-terminal N2 is likely to
be easily lost from a chain, so the best arrangement of carbon
atoms would include carbon atoms at the second position
with respect to each end of the chain (as seen in isomer 25).
N4C2 is 70% nitrogen by mass and has favorable energetic
properties. Longer chains that are richer in nitrogen will be
even better energetic materials, if they are stable.
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Abstract: We present a Quantum Monte Carlo study of the dissociation energy and the dispersion
curve of the water dimer, a prototype of hydrogen bonded system. Our calculations are based on
a wave function which is a modern and fully correlated implementation of the Pauling’s valence
bond idea: the Jastrow Antisymmetrised Geminal Power (JAGP) [Casula et al. J. Chem. Phys. 2003,
119, 6500-6511]. With this variational wave function we obtain a binding energy of -4.5(0.1) kcal/
mol that is only slightly increased to -4.9(0.1) kcal/mol by using the Lattice Regularized Diffusion
Monte Carlo (LRDMC). This projection technique allows for the substantial improvement in the
correlation energy of a given variational guess and indeed, when applied to the JAGP, yields a
binding energy in fair agreement with the value of -5.0 kcal/mol reported by experiments and other
theoretical works. The minimum position, the curvature, and the asymptotic behavior of the dispersion
curve are well reproduced both at the variational and the LRDMC level. Moreover, thanks to the
simplicity and the accuracy of our variational approach, we are able to dissect the various contributions
to the binding energy of the water dimer in a systematic and controlled way. This is achieved by
appropriately switching off determinantal and Jastrow variational terms in the JAGP. Within this
scheme, we estimate that the dispersive van der Waals contribution to the electron correlation is
substantial and amounts to 1.5(0.2) kcal/mol, this value being comparable with the intermolecular
covalent energy that we find to be 1.1(0.2) kcal/mol. The present Quantum Monte Carlo approach
based on the JAGP wave function is revealed as a promising tool for the interpretation and the
quantitative description of weakly interacting systems, where both dispersive and covalent energy
contributions play an important role.

1. Introduction
The hydrogen bond is a fundamental intramolecular and
intermolecular interaction determining the properties of a

large number of systems from liquids to solids, from
biological1 to inorganic.2 Hydrogen bond is commonly
defined as a local bond in which a hydrogen atom is attached
to an electronegative group (the donor) interacting with
another nearby electronegative group (the acceptor) not
covalently attached. Dissociation energies cover a range of
about 2 orders of magnitude, ranging from -0.2 to 40 kcal/
mol, the H-bonding arising from the interplay of different
types of interactions. Electrostatic forces play the major role
in a large number of hydrogen bonds, although charge
transfer effects and van der Waals (vdW) interactions are
always present.

* Corresponding author e-mail: leonardo.guidoni@uniroma1.it,
http://bio.phys.uniroma1.it.

† CASPUR.
⊥ F.S. and L.S. contributed equally to this work.
‡ International School for Advanced Studied (SISSA/ISAS).
# Current address: Department of Chemistry, University of

California, Davis, Davis, CA.
§ Universita di Roma.
|NAST Centre.

J. Chem. Theory Comput. 2008, 4, 1428–14341428

10.1021/ct800121e CCC: $40.75  2008 American Chemical Society
Published on Web 08/06/2008



Water, the most studied H-bonding liquid, represents the
prototype of hydrogen bonded systems. The energetics and
directionality of water hydrogen bond is a key factor for
understanding the anomalous properties of the water phase
diagram,3 the behavior of small water clusters,4–6 and the
role of aqueous environment in a variety of biological
systems.7 The dissociation energy of the isolated water dimer
lies in the middle of the hydrogen bond dissociation energy
scale, the most stable configuration being associated with a
binding energy De

exp ) -5.0 kcal/mol, as extrapolated by
experimental data.8 The partitioning of this energy in
different contribution terms is still the subject of a vivid
debate. At the equilibrium bonding distance, typically in a
range between 2.5 and 3.5 Å, quantum effects become
relevant, and a pure electrostatic picture of the interaction is
not fully satisfactory. The partial covalent nature of the
hydrogen bond has been recently invoked by the first analysis
of the Compton profile on ice Ih.9 However, the interpretation
of the experimental data has been questioned by several
authors10,11 and further revised.12 The amount of the
intermolecular covalent contribution, if any, to the binding
energy is still an open issue. On the other hand, due to the
lack of an unambiguous computational protocol it is still not
clear how to estimate the van der Waals contribution to the
hydrogen bonding. The role of these interactions may also
be at the basis of the current drawbacks of empirical force
fields in use for large scale simulations.13,14

A definition of the intermolecular covalent component of
the hydrogen bonding can be drawn using the intuitive picture
of a chemical bond introduced by Pauling as the superposi-
tion of Lewis’ structures.15 In the simple case of hydrogen
bonding in a water dimer (H2O)2, three mesomeric Lewis
structures may be drawn, one of them describing the charge
transfer situation (OH)- · · · (H3O)+, that confers partial
covalent character to the hydrogen bond. Within a quantita-
tive Valence Bond representation it would be therefore
possible to distinguish, in a simple way, the covalent
intermolecular energy contribution by the other interaction
energy terms.

At the same time, because of the crucial role of electronic
correlation, especially for dispersive interactions, high quality
electronic structure correlated methods (based on molecular
orbital theory) are necessary for a proper quantitative
description of a hydrogen bond. New classes of Density
Functional Theory (DFT) functionals have been developed
in the past years with the aim to describe weakly bound
systems avoiding semiempirical approaches. Nevertheless,
the highly nonperturbative and nonlocal character of the vdW
interactions makes their inclusions difficult in DFT schemes
without the resorting to ad hoc empirical parametrizations.16

Looking for an ab initio method free of empiricism, the
Quantum Monte Carlo17,18 appears as a possible alternative
to other more standard quantum chemistry methods such as
Configuration Interaction, Möller Plesset perturbation theory,
or coupled-cluster (CC).

Recently, a QMC technique based on the resonating
valence bond wave function was introduced in ref 19 and
further developed later. This approach represents a very
efficient implementation of the valence bond Pauling idea,

discovered by P.W. Anderson in the field of strongly
correlated electrons:20 the Jastrow Antisymmetrised Geminal
Power (JAGP). This wave function has been demonstrated
to be effective in describing highly correlated diatomic
moleculesliketheC2aswellasπ-π interactingcomplexes.17,19,21

In the present article we present a Variational Monte Carlo
(VMC) and Lattice Regularized Diffusion Monte Carlo
(LRDMC) study of the water dimer dissociation energy and
dispersion curve, using as a variational ansatz the JAGP wave
function. An important advantage of the JAGP VMC
approach resides in the possibility of dissecting, in a simple
way, the energy contributions of the different terms compos-
ing the wave function, like dynamical electron correlations
and the intermolecular covalent contribution. Dynamical
electronic correlations associated with the charge fluctuations
and van der Waals interactions are indeed included in the
wave function with Jastrow terms, whereas static correlations
are described by the resonance of valence bond singlets in
the AGP. The amount of binding energy arising from the
correlated dynamical charge fluctuations, related to the vdW
forces, can be therefore estimated by the evaluation of the
energy contributions of the Jastrow factors. On the other side,
following the Pauling idea of chemical bonding we can
calculate the energy contribution of the intermolecular
covalent term and get insight into the covalent nature of the
hydrogen bonding mechanism.

2. Computational Methods

2.1. Geometries. For nuclear coordinates of the water
monomer we used the experimental equilibrium geometry22

with an O-H bond length of 0.9572 Å and a H-O-H angle
of 104.52°. For the dimer we used the linear configuration
with Cs symmetry, oxygen-oxygen distance 2.976 Å,23,24

and O1-H1 · · ·O2 angle of 180°. We used the internal
geometry of each monomer as the experimental one. For the
dispersion curve we simply used the geometries obtained
by shifting away the two monomers along the O1-H1 · · ·O2

binding axis and keeping fixed their relative orientation.
Effects of nuclear relaxation upon binding do not affect our
estimations, as we verified by calculating the binding energy
with the geometry from CCSD(T) calculations.25

2.2. Variational Monte Carlo and the JAGP Wave
Function. As variational ansatz we use the JAGP wave
function introduced in refs 19 and 21. The wave function
ΨJAGP of a system of N electron is defined by the product of
a symmetrical Jastrow term J and an antisymmetrical
determinantal part ΨAGP:

ΨJAGP(r1, ..., rN) ) ΨAGP(r1, ..., rN)J(r1, ..., rN) (1)

The determinantal part ΨAGP is the antisymmetrized product
of spin singlets. The pairing function in singlet system
without spin polarization is described by

ΨAGP ) Â[Φ(r1
v , r1
V )...Φ(rN⁄2

v , rN⁄2
V )] (2)

where Â is the operator that antisymmetrizes the product of
N/2 geminal singlets Φ(rv, rV) ) ψ(rv, rV)1/√2(|vV〉-|Vv〉).
The spatial part of the geminals is expanded over an atomic
basis set
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ψ(rv, rV))∑
a,b

ψa,b
(rv, rV) (3)

ψa,b
(rv, rV))∑

l,m

λl,m
a,b

φa,l
(rv)φb,m

(rV) (4)

where the indexes l, m run over different orbitals centered
on nuclei a, b. The Jastrow factor J is further split into one-
body, two-body, and three-body terms (J ) J1J2J3). The J1

and J2 terms deal with electron-electron and electron-ion
correlation, respectively. The two-body (one body) Jastrow
depends only on the relative distance ri, j ) |ri-rj| between
each electron pair (i, j) (electron-ion pair) and has been
parametrized by a simple function u(ri, j) ) (1-exp(-bri, j))/
2b that rapidly converges to a constant when ri, j became
large.17 In this way the large distance behavior of the Jastrow
is determined only by the J3 Jastrow factor, that contains all
variational freedom left and, in particular, as we shall see
later on, the slowly decaying vdW correlations. Therefore
we have chosen to parametrize this important part of our
correlated wave function in a systematic and exhaustive way,
similarly to what we have done for the AGP contribution:

J3(r1, ..., rN)) exp(∑
i<j

ΦJ(ri, rj)) (5)

ΦJ )∑
a,b

Φa,b
J Φa,b

J (ri, rj))∑
l,m

gl,m
a,b

φa,l
J (ri)φb,m

J (rj) (6)

Both the determinantal φa, l and Jastrow φa, l
J orbitals are

expanded on Gaussian basis sets centered on the correspond-
ing nuclear centers a and b. By increasing the atomic basis
set one can rapidly reach the “complete basis set limit”
because all cusp conditions are satisfied by an appropriate
and simple choice of the J1 (satisfying the electron-ion cusp)
and J2 (satisfying the electron-electron cusp) terms.17

All variational parameters, such as the Jastrow parameters
and the {g} and the {λ} matrices of eqs 3 and 5 as well as
the exponents and the coefficients of the Gaussian orbitals,
have been optimized by energy minimization following the
methods described in refs 26 and 27.

The oxygen valence-core interaction was described using
the recently reported energy-consistent pseudopotentials.28

A VMC calculation for the dimer system with the larger basis
set and with 0.1 mH accuracy was run for about 12 h on
eight AMD Opteron 280 CPUs at the CASPUR computer
center. Full wave function optimization was about a factor
of 4 more time-consuming.

2.3. Diffusion Monte Carlo. A systematic way for
improving the quality of a variational wave function is to
perform a Diffusion Monte Carlo calculation, filtering the
ground-state properties by a diffusion process.29 Actually,
due to the presence of the fermionic problem, the DMC is
implemented within the fixed node (FN) approximation,30

by imposing that the final ground state has the same nodal
structure of the trial WF. In this work we use a slightly
modified version of the DMC method, the Lattice Regular-
ized Diffusion Monte Carlo (LRDMC). In this method, the
continuum Monte Carlo moves are made by discrete finite
steps defined by two lattice spaces a and a′. By using an
incommensurate ratio a′/a the electronic trajectory fills the
entire space, thus avoiding most lattice artifacts. The

introduction of the lattice implies that there are a finite
number of possible moves during the diffusion process, and
this allows one to avoid the locality approximation and to
restore the upper bound property of DMC.31,32 Within this
regularization the exact Hamiltonian H is replaced by a lattice
regularized one Ha such that HafH for af0.31 We used as
lattice spaces the values a ) 0.1, 0.2, 0.3, 0.5 au, and then
the energy was extrapolated to zero lattice space.

Since the dipole moment operator does not commute with
the Hamiltonian, in LRDMC we evaluated the estimator µ
) 2µLRDMC - µVMC, where µLRDMC is the LRDMC mixed
average value extrapolated to a ) 0. A LRDMC calculation
for the dimer system with the larger basis set, 0.1 mH
accuracy and a ) 0.2, was run for about 12 h on eight AMD
Opteron 280 CPUs at the CASPUR computer center.

2.4. DFT Calculations. For the sake of comparison we
perform DFT calculations using a plane wave basis set as
implemented in the CPMD code.33 For the exchange and
the correlation part of the universal functional we used BLYP
generalized gradient corrections34,35 and the hybrid functional
B3LYP.36 Core electrons were taken into account using
norm-conserving Troullier-Martins type pseudopotentials.37

We also performed calculations with Dispersion-Corrected
Atom-Centered Potentials (DCACP)16 as described in ref 38.
The Kohn-Sham orbitals were expanded in plane waves up
to a cutoff of 125 Rydberg.

3. Results and Discussion

3.1. Dissociation Energy and Charge Fluctuations. In
this section we report our results on the water dimer at the
experimental binding distance, and we investigate the influ-
ence of different Jastrow terms of the wave function on the
dissociation energy. In the pairing determinant the oxygen
atoms are described using a Gaussian basis set of 4s4p
contracted to [1s2p], whereas we have only an uncontracted
1s shell for the hydrogen. We verified that the inclusion of
a d-wave shell does not affect the binding energy giving only
a rigid shift of the total energy of the dimer and the monomer
within LRDMC.

On the contrary, more subtle effects have been observed
in the structure of the three-body J3 Jastrow factor. This term
includes in the wave function additional dynamical electron
correlations and contributes to the proper behavior of the
electronic charge distribution. The correct description of the
charge correlations reveals crucial for the inclusion of the
dispersive contribution to the vdW interactions, being
originated by the correlations between charge fluctuations
in different spatial regions.39

In Table 1 we report the JAGP monomer energy, EH2O,
the dimer energy, E(H2O)2, and the dissociation energy, De,
for increasing three-body Jastrow basis sets. The dissociation
energy of the water dimer has been calculated simply as De

) Edimer - 2Emonomer. As the number of p-wave shells is
increased, we observe an improvement of the binding energy,
eventually obtaining at the VMC level a value of De )
4.5(0.1) kcal/mol.

The reported LRDMC results, extrapolated to the a ) 0
limit, appear to have a much faster convergence in terms of
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total and dissociation energies. This is due to the nature of
the projection method which accuracy relies only on the
nodal surface of the trial wave function. Our results indi-
cate that the VMC optimized nodal surface, and therefore
the corresponding DMC energy, is only slightly affected by
the basis set extension of the Jastrow factor. On the other
hand, at the VMC level, the size of the Jastrow factor is
crucial for improving the binding energy of the dimer. This
is probably due to the role of the Jastrow in localizing charges
and in introducing dynamical correlations. In this regard the
role of p-wave shells in the binding energy will be discussed
later in more details.

The LRDMC results are obtained extrapolating at zero
lattice space and give a binding energy of 4.9 ( 0.1 kcal/
mol, in good agreement with the high level quantum
chemistry calculations: Klopper et al. have reported 4.99 kcal/
mol and 5.02(5) kcal/mol, as a basis set limit for MP2 and
Coupled Cluster calculations.25 Recently a QMC study18 has
reported a value of 5.4(1) kcal/mol, obtained without
optimization of the orbitals in the determinant, which is
directly taken from a B3LYP calculation.

Our LRDMC results are in the range of previously reported
all-electron and pseudopotential QMC calculations.24,18,40 We
also agree with experimental results although they suffer
uncertainty due to theoretical estimation of the ZPE. Actually
when compared with the experimental dimer dissociation
energy De

exp, the difference between the zero point energy
(ZPE) of the monomer and the dimer should be also taken
into account: De

exp ) D0 - 2ZPEmonomer + ZPEdimer. The
experimental energy reported hereafter is therefore corrected
by this quantity calculated by theory or estimated by
experiments.24 As pointed out in ref 17 the JAGP wave
function is certainly size consistent for the two water
monomers, only when the complete basis set limit is reached
for the Jastrow factor. This property can be used to check
the basis-set accuracy of the three-body Jastrow term. To
verify the size consistency of the wave function we calculated
the dissociation energy De

/ by separating the two monomers
by a large distance. De

/ agrees with De.
In QMC calculations, correlation functions different from

the energy are often very sensitive to the quality of a wave
function. We have therefore calculated the monomer and
dimer dipole moment µ that can be easily computed at the
VMC level and at the LRDMC level using the mixed

estimator. In the case of the water monomer both the
variational and the LRDMC dipole moments are rather close
to the experimental value of 1.855D.3 The correction
introduced by LRDMC is a slight downshift of the extrapo-
lated estimator, µ ) 1.870(10) D, in agreement with other
QMC calculations18 and ab initio methods.41

We now turn our attention to the role of dynamical
correlations included through the Jastrow term. As discussed
above the inclusion of p-wave orbitals in the J3 Jastrow term
has a significant effect on the binding energy. Similarly, the
effect of the J3 basis set is also visible on the dipole moments
in Table 2. One reason for this influence can be attributed
to electrostatic interactions, since the 3-body term is impor-
tant for the charge distribution. Another relevant effect of
the J3 term is the modulation of the van der Waals
interactions. Three effects contribute to the van der Waals
forces: induction, thermal orientation, and dispersion. The
dispersion forces are quantum mechanical effects originating
from the interaction between instantaneous dipoles or, using
a second order perturbation theory perspective,42 by the
correlated transition of a couple of electrons from occupied
to unoccupied states. Given thus two atomic centers a and b
at a large distance the J3 term in eq 5 can be expanded for
the small value of gij

a,b and then applied to a single geminal
pair (see eq 3), ψa, b(rv, rV). The result can be viewed as a
correlated transition of two electrons located in different
atomic centers from occupied orbitals to unoccupied orbitals
with higher angular momentum.42 More generally the effect
of the J3 at a large distance has the same structure of the
vdW perturbative term if on each atomic center the basis
used for the Jastrow contains odd orbitals with respect to
the spatial reflection, namely when the Jastrow basis set

Table 1. VMC and LRDMC Energies for the Water Monomer and Dimer (Atomic Units)a

3-body Jastrow basis EH2O E(H2O)2 De

VMC
2s2p-local[O]1s[H] -17.2279(1) -34.4585(2) -0.0024(4)[-1.5(0.3)]
2s2p[O]1s[H] -17.2388(2) -34.4807(5) -0.0031(7)[-1.9(0.4)]
2s4p[O]1s[H] -17.24089(5) -34.4874(1) -0.0056(2)[-3.5(0.1)]
2s6p[O]1s[H] -17.24119(8) -34.4886(1) -0.0062(4)[-3.9(0.3)]
2s6p[O]1s1p[H] -17.2435(1) -34.4940(1) -0.0071(2)[-4.5(0.1)]

LRDMC
2s2p-local[O]1s[H] -17.2576(2) -34.5228(2) -0.0076(3) [-4.8(0.2)]
2s2p[O]1s[H] -17.2613(1) -34.5303(1) -0.0077(2) [-4.8(0.2)]
2s4p[O]1s[H] -17.2619(1) -34.5315(1) -0.0077(2) [-4.8(0.2)]
2s6p[O]1s[H] -17.2619(1) -34.5314(1) -0.0076(2) [-4.8(0.1)]
2s6p[O]1s1p[H] -17.2620(1) -34.5318(1) -0.0078(2) [-4.9(0.1)]

a The dissociation energy calculated as De )E(H2O)2 - 2EH2O is reported in the last column in atomic units and (in square brackets) in
kcal/mol.

Table 2. Dipole Moment of Water Monomer and Dimera

3B Jastrow basis µH2O [Debye] µ2[H2O] [Debye]

VMC
2s2p-local[O]1s[H] 2.116(17) 2.805(20)
2s2p[O]1s[H] 1.935(12) 2.834(23)
2s6p[O]1s[H] 1.880(8) 2.692(14)
2s6p[O]1s1p[H] 1.890(8) 2.597(12)

Extrapolated
2s6p[O]1s[H] 1.874(10) 2.648(18)
2s6p[O]1s1p[H] 1.870(10) 2.603(13)

a VMC estimates are reported in the top part of the table.
Extrapolated values are reported in the bottom part of the table.
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contains at least p wave orbitals. In principle a small vdW
contribution can be derived also from high angular momen-
tum orbitals included in the geminal expansion. In this work
however, in order to disentangle the genuine dispersive vdW
contribution, we have avoided using polarization orbitals in
the AGP that, as discussed before, do not affect the binding
energy. In this way the instantaneous correlated polarization
induced by the J3 term allows for the inclusion of dispersive
vdW interactions in a transparent variational form.

To understand the effects of the J3 terms on the dissocia-
tion energy, we calculated the variational energy of the wave
function obtained excluding intermolecular gl, m

a,b terms in eq
5 as reported in Table 3. In particular we considered the
H-O and O-O contributions in the p-p channel, and
eventually we eliminated all intermolecular terms (last row
of Table 3). Data show nonadditivity of the energy loss, as
expected by interactions arising from polarization effects.43

Among the p-p wave contribution, the oxygen-oxygen
channel seems to be the most relevant term in the Jastrow
expansion. It is worth noting that the total dipole moment
of the dimer depends only weakly on the intermolecular J3

Jastrow terms, see Table 3. This indicates that the distribution
of the electronic charge is not greatly affected by the missing
terms. The energy differences are then due to the part of the
dynamical correlation involving correlated excitations to p
states. The energy loss in the binding energy can therefore
be attributed within our formalism to dispersive van der
Waals interactions.

It is of interest to compare our result to previous calcula-
tionsbasedonsymmetry-adapted-perturbation-theory(SAPT)44,45

that estimated the contribution of dispersion forces to the
water dimer hydrogen bond. This contribution amounts to
about -1.75 kcal/mol as reported in Table 5 of ref 45. Albeit
the energy is not partitioned the same way in the two
approaches, the assessment given by SAPT is in good
agreement with our estimation of -1.5(2) kcal/mol.

3.2. Dispersion Curve. The VMC and LRDMC disper-
sion curve of the water dimer is reported in Figure 1A. It
has been calculated by computing the total dimer energy as
a function of the oxygen-oxygen distance without changing
the internal geometry and the relative orientation of the
monomers. We used the 2s6p[O]1s[H] basis set for the
3-body Jastrow, which, as reported before, guarantees size
consistency during the dissociation process at large distances.

The attractive tail of the water-water interaction potential
is dominated by a dipole-dipole interaction energy. A
polynomial fit for d g 3.5 Å shows that E2(H2O) ∼ dR with R
) 3.2-3.3 for the VMC and the extrapolated LRDMC
curves, respectively.

The behavior of the dispersion curve at short distances is
shown in the inset of Figure 1A, together with a fit performed
using a Morse potential. At the VMC level, the minimum
of the curve, as obtained by the fitting procedure, is at
distance d ) 3.037(4) Å, which is slightly shifted with
respect to d ) 2.976 Å reported by experiments.23 However,
it should be noted that, considering the error bars, the curve
results to be rather flat around the equilibrium distance.
LRDMC with a lattice space a ) 0.2 au, and the LRDMC
extrapolation to zero lattice space af0, improves the location
of the equilibrium distance. In this latter case the fitted
minimum is at d ) 2.982(1) Å, which is very close to the
experimental value. In Figure 1B we report a comparison
with pure or empirically parametrized Density Functional
methodsandsymmetry-adaptedperturbationtheory(SAPT).44,46

Data show that pure BLYP and B3LYP curves underestimate
the dissociation energy, whereas calculations performed with

Table 3. VMC Energy and Dipole Moment of the Water
Dimer for Different Jastrow J3 Termsa

pairing terms in J3 E(H2O)2 (au) ∆E kcal/mol) µ(H2O)2 [D]

full {g l, m
a, b} matrix -34.4940(1) 0.0 2.597(12)

(p[H])1 (p[H])2 -34.49372(9) +0.2(1) 2.621(12)
(p[O])1 (p[H])2 -34.4938(1) +0.1(1) 2.623(12)
(p[H])1 (p[O])2 -34.4935(1) +0.3(1) 2.610(13)
(p[O])1 (p[O])2 -34.4918(1) +1.4(1) 2.628(12)
intermolecular

p-p g l, m
a, b ) 0

-34.4916(3) +1.5(2) 2.637(13)

a The different J3 are obtained by canceling the p-p electronic
correlation between atomic centers belonging to different
molecules. The atomic center of the p wave is indicated between
square brackets, and the water molecule index is indicated by the
pedex (1 or 2). The energy difference ∆E with respect to the
complete g l, m

a, b matrix, first line, is also reported in kcal/mol.

Figure 1. Water dimer dissociation. The total energy of the
water dimer is reported as a function of the oxygen-oxygen
distance. In Panel A the VMC and LRDMC results are
reported. In the inset graph the behavior around the minimum
is zoomed in. In Panel B the LRDMC curve is compared with
other methods. SAPT values have been taken from ref 46.
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empirically parametrized DCACP pseudopotentials are closer
to our LRDMC curve. The SAPT curve is at the top of our
results with small discrepancies at very short distance.

3.3. Covalent Contribution to Hydrogen Bonding. In
the proximity to the equilibrium distance the interplay between
electrostatic and pure quantum effects is expected to be relevant.
Although a unique and commonly accepted definition of
covalent contribution in a hydrogen bond is still missing, within
the formalism of the JAGP wave function, we can define the
covalent energy contribution as the energy contribution arising
from the intermolecular pairing terms of the RVB determinantal
part of the wave function (see eq 3).

The “chemical bond” between the two molecules is indeed
due to the superposition of all singlet terms in the geminal
expansion that connect two nuclei belonging to different
water molecules. This is schematically illustrated in the panel
A of Figure 2. In order to evaluate the covalent contribution
we proceed as follows. We cut the intermolecular pairing
valence bonds in the pairing function, by imposing ψa, b )
0 if a and b belong to different monomers (as sketched in
panel B of Figure 2). Then the wave function is reoptimized
with the above constraint in order to correctly include the
electrostatic effects and the slowly decaying vdW correlations
present in our Jastrow factor. In Figure 2C we report, as a
function of the oxygen-oxygen distance, the binding energy
calculated with the full wave function (circle) and with the
wave function lacking the intermolecular valence bond terms

(square). The difference between the two curves vanishes
as the molecules reach a O-O distance of 3.5 Å. We point
out that, by cutting the intermolecular pairing terms, the
minimum of the energy dispersion slightly shifts to a larger
equilibrium distance.

At the equilibrium distance we found that the contribution
of the intermolecular pairing terms, computed at the VMC
level, is ∆inter ) 1.1(0.1) kcal/mol, corresponding to about
24% of the computed dimer binding energy. Our estimate
of the covalent contribution, defined above, can be compared
to what other authors found using different theoretical
frameworks and different definition and that is generally
referred to as intermolecular charge transfer (CT).47–50 In
the seminal works based on Morokuma decomposition of
the binding energy47,48 the CT contribution to hydrogen
bonding is estimated in the range -1.3 to -1.8 kcal/mol,
thus about 25% of the total binding energy. A slight smaller
contribution, about 11%, resorts from the block-localized
wave function approach proposed by Mo et al.49 They also
reported that CT contribution vanishes at about 3.5 Å in good
agreement with our finding. It is interesting to observe that
the damping of the oscillation at d ∼ 4 Å of the Fourier
Transforms of the Compton profile has been interpreted in
ref 12 as a cutoff for the covalent contribution.9,12 However
such an interpretation of the experiments is not fully
accepted.10,11

4. Conclusions

The understanding of hydrogen bond systems is still a challenge
for computational chemistry. Even for small molecular systems
the weakness of the interactions and the critical role of electron
correlation require the use of affordable correlated quantum
chemistry methods. The interplay between interactions different
in nature, such as dispersion forces and intermolecular charge
transfer, is in many cases crucial for the proper description of
the bond properties.

We have shown that the Quantum Monte Carlo method
is effective for describing the hydrogen bond between two
water molecules. The calculated binding energy matches the
experimental value and the estimates from other advanced
methodologies. Good agreement with experiments is also
achieved for the computed dipole moments. Thanks to the
good size scaling properties and the embarrassingly paral-
lelism of QMC algorithms, these methods appear extremely
competitive in the context of massive parallel computation.

Moreover, some conceptual advantages rely on the struc-
ture of the AGP wave function, a correlated valence bond
representation of the electronic system. The AGP formalism
gives the possibility to work back on an intuitive picture of
localized chemical bonds such as the Pauling’s superposition
of Lewis structures. Thanks to the fully correlated structure
of the wave function, this picture can be used without
compromises in terms of accuracy.

Upon interpretation of the wave function terms, we
estimate at the VMC level the covalent contribution to
account for 1.1(2) kcal/mol. A similar contribution to the
binding energy is given by correlated dipolar vdW fluctua-
tions that account for 1.5(2) kcal/mol.

Figure 2. Top panel: Pictorial view of the intermolecular
pairing term of the determinant part of the wave function. In
Panel A all the intermolecular pairing are drawn. In Panel B
we represent the wave function with the intermolecular pairing
term set to zero. In the bottom part of the figure the total
energy of the water dimer is reported as a function of the
oxygen-oxygen distance between the two monomers. Two
wave functions are compared, one with all the intermolecular
pairing term optimized (black circle) and the other one with
intermolecular pairing terms set to zero (red square).
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The quality of our results on the water dimer encourages
the application of the method to larger hydrogen bonded
systems such as water clusters or small biomolecules. To
reduce the computational costs it would be desirable to keep
down the number of variational parameters when the size
of the system increases. In this respect, different strategies
are under investigation.
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Abstract: Intramolecular polarization is the change to the electron density of a given atom upon
variation in the positions of the neighboring atoms. We express the electron density in terms of
multipole moments. Using glycine and N-methylacetamide (NMA) as pilot systems, we show
that neural networks can capture the change in electron density due to polarization. After training,
modestly sized neural networks successfully predict the atomic multipole moments from the
nuclear positions of all atoms in the molecule. Accurate electrostatic energies between two atoms
can be then obtained via a multipole expansion, inclusive of polarization effects. As a result
polarization is successfully modeled at short-range and without an explicit polarizability tensor.
This approach puts charge transfer and multipolar polarization on a common footing. The
polarization procedure is formulated within the context of quantum chemical topology (QCT).
Nonbonded atom-atom interactions in glycine cover an energy range of 948 kJ mol-1, with an
average energy difference between true and predicted energy of 0.2 kJ mol-1, the largest
difference being just under 1 kJ mol-1. Very similar energy differences are found for NMA,
which spans a range of 281 kJ mol-1. The current proof-of-concept enables the construction of
a new protein force field that incorporates electron density fragments that dynamically respond
to their fluctuating environment.

1. Introduction

For large systems, ab initio calculations quickly become
computationally expensive and even prohibitive when simu-
lations need to be carried out. Nonetheless, force fields
dramatically accelerate simulations or even enable them. This
is often achieved at the expense of accuracy. The associated
potentials must be quantitatively accurate,1,2 however, if one
wishes to study problems such as molecular recognition,3,4

polymorphism,5 and protein conformation.6-8

Force fields suffer from a reliance on parameter fitting and
various a priori simplifications, which restrict the transfer-
ability of the potentials. A popular simplification in force
field design is the assignment of point charges to atoms. Here,
the atomic charge density, which is ultimately responsible
for the electrostatic interaction, is boldly assumed to be
spherical and replaced by a monopole (moment). Another
popular simplification occurs in the treatment of polarization

where atomic charges are deliberately and permanently
enhanced. Alternatively, a dynamic response to a fluctuating
external field is modeled by atomic charges acquiring a
companion charge, attached to the atom by a fictitious spring.
The importance of accurately modeling polarization is widely
accepted, as illustrated by a special issue of this journal,
published in 2007, dedicated to this critical problem.9

Furthermore, in 2004 Gresh et al. demonstrated10 the need
for ab initio distributed multipoles and anisotropic distributed
polarizabilities in a study on tetrapeptides. Subsequently, a
high level MP2 study11 on conformations of amino acids
highlighted the importance of polarizability (as well as
multipole moments) as important factors in the design of
new force fields. This finding is echoed in recent ab initio
conformational work12 on seven pilot molecules.

Despite dramatic advances in computer hardware, most
force fields still adopt the aforementioned simplifications.
For example, CHARMM,13 AMBER,14 GROMOS,15 and
OPLS16 treat atoms as nonpolarizable point charges. In* Corresponding author e-mail: pla@manchester.ac.uk.
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general, the assignment of atomic charges is not straight-
forward, and there are many ways that molecular charge
distribution can be separated into atomic components. Most
modern force fields rely on fitting individual charges to a
molecular electrostatic potential (MEP).17-20 In their careful
and deep analysis of this fitting problem Chirlian and Francl
showed21,22 from singular value decompositions of the least-
squares matrices that statistically valid charges cannot be
assigned to all the atoms in a given molecule. As a result,
atoms in similar chemical environments can be given
different fitted charges. Ignoring this careful mathematical
analysis, arbitrary penalty functions were introduced23 on
the spurious physical grounds that a “buried” atom would
somehow contribute less to a perfectly additive electrostatic
potential. Another problem arises if we consider different
conformations of the same molecule. Different conformations
give different MEPs, and hence different charges may be
fitted for the same atoms. Furthermore, the fitting procedure
does not account for the internal polarization as the charge
density changes with conformation. Most MEP fitting
procedures take the mean charge for each atom from a
number of conformations24 or fix the charge of a particular
atom type to be the same.23

The point charge representation is also inadequate for
explaining the relative stability of crystal polymorphs of
organic molecules or the structural motifs important for
molecular recognition.3,5 These cases are dependent on the
strength and the directionality of intermolecular interactions,
the directionality being due to the anisotropic distribution
of charge. Because of the inability to represent this aniso-
tropic distribution, many point charge models introduce “off-
atom” sites. A prime example of this is the placing of off-
atom sites at the “lone-pair” locations about oxygen
atoms.25-28

A more accurate description of the charge distribution uses
multipole moments, which can be regarded as the original
coefficients of the series expansion that describes the
electrostatic potential. Although elaborate compared to point
charges, multipole moments can be expressed compactly (and
irreducibly) in terms of spherical harmonics.29 Multipole
moments can be determined in a number of ways. Distributed
multipole analysis (DMA)30 determines the multipole mo-
ments from the wave function of a molecule by analyzing
the overlap between Gaussian functions. DMA moments are
employed in force fields such as AMOEBA31 or the effective
fragment potential (EFP) method.32 Alternatively, the par-
titioning scheme of Vigné-Maeder and Claverie33 is used
within the “sum of interactions between fragments ab initio”
(SIBFA) potential.34,35 As a further alternative, the Gaussian
electrostatic model (GEM)36,37 approach, which has evolved
from SIBFA, uses a full charge distribution based on a
density fitting scheme rather than multipole moments.
Another way of partitioning the charge density is by means
of Wannier functions.38,39 They were employed to determine
multipole moments in simulations, but they were not directly
involved in determining the electrostatic interaction.40 Mo-
ments derived by this method have been implemented in
simulations of biomolecules.41

In this paper we work with the partitioning method of the
quantum theory of “Atoms in Molecules”,42,43 which we
consider as part of the quantum chemical topology (QCT)
approach, a name we justified in ref 44. The QCT approach
partitions the electron density into finite topological atoms,
which exist in real space. The corresponding atomic multi-
pole moments are then obtained by integration of the
appropriate density over the atomic volumes. Note that the
DMA method allows multipoles to be centered on non-
nuclear sites, such as in the middle of a chemical bond.
Naively one would think that this flexibility is missing in
the QCT approach in which the multipole expansion site
coincides with a nucleus, unless there is a non-nuclear
attractor with its own multipole moments. However, thanks
to a clear distinction between distribution and partitioning45

one can shift QCT atomic multipole moments to a site away
from the nucleus, such as the bond midpoint.45 Alternative
chemically intuitive distributed electrostatic moments can be
obtained,46 using the topology of ELF,47 a prime component
of the QCT approach.

QCT moments have been successfully used in the simula-
tion of liquid HF48 and liquid water.49,50 These results were
preceded by work that corroborated the success of QCT
multipole moments in the reproduction of the electrostatic
potential51 and electrostatic or Coulomb atom-atom interac-
tion52,53 and the prediction of structure of nucleic acid-base
pairs.54 In this systematic work on QCT potentials, the
important issue of the convergence of the multipole expan-
sion was featured strongly, leading to solutions that increased
the convergence radius55,56 or accelerated convergence.45 We
also showed that 1-3 and 1-4 interactions can be expressed
as a convergent multipole expansion,57 putting these interac-
tions on a par with nonbonded interactions (1 - n, n > 4).
Even exchange energy can be favorably expanded in terms
of exchange moments, but their transferability remains
elusive.58 A separate study59 determined the lowest rank
necessary to achieve a preset error in atom-atom interaction
energy.

In the aforementioned work the atomic charges were kept
constant with respect to any changes in the orientation or
conformation of the molecules. However, this is not repre-
sentative of reality. The distribution of electron density shifts
in response to changes in the intramolecular and intermo-
lecular interactions as orientations and configurations change.
Polarization can be modeled by distributed polarizabilities,60,61

pioneered within the QCT context by Ángyán et al.,62 and
later applied to study63 field-induced charge transfer along
the hydrogen bonding in the water dimer. Since then we have
taken a drastically different route to model polarization,
which does not introduce an explicit polarizability tensor.
Instead, the polarizability is implicit (and still fully aniso-
tropic), in that a machine learning technique is trained to
predict atomic multipole moments from the positions of all
other atoms in the molecule. The prediction formulas are
analytical and nonlinear. They are stored within a trained
neural network and can be retrieved, in principle, although
this is typically not done in the neural network literature.
Of course, in its convoluted analytical shape, the trained
neural net can be exported into a molecular dynamics
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package, for example. Second, it should be emphasized that
the current approach abandons upfront the picture of an
external electric field that causes the polarization. Instead,
we embrace the more general picture that electron density
fragments change in response to a change of nuclear
positions, which cause the field. This field, which applies at
very short-range and which can be most inhomogeneous
(anisotropic), exerts its influence through the ab initio
calculations that generate the electron density in the first
place. We only need to focus on the result of the field,
whether intra- or intermolecular in nature, without ap-
proximating it in any way. We believe that this approach
automatically takes care of the nonadditivity of polarization.
Furthermore, if atoms are taken out of a sufficiently large
environment, their electron density has already been adjusted.
Hence, in principle there is no need for an iterative scheme
that adjusts the atom and its neighbors using an explicit
polarizability tensor.

We published the first example and proof-of-concept of
the idea of implicit neural net polarization by means of a
molecular dynamics simulation64 of a polarizable hydrogen
fluoride dimer. The machine learning method consists of
standard backpropagation (artificial) neural networks (NNs).
Fluctuating QCT multipole moments, which expressed the
intermolecular polarization, were successfully modeled by
NNs. The current paper presents the first example of this
novel technique applied to intramolecular polarization,
illustrated by the molecules glycine and N-methylacetamide
(NMA).

NNs mimic the way a brain functions by using an array
of interconnected units that pass information between
themselves to recognize complex patterns. Through the
modification of the strength of the connections between these
units, NNs are able to learn functions. NNs have been applied
to a number of systems and are able to represent them
without any prior knowledge about the form of the potentials
which govern such systems.65 Instead, NNs are able to learn
the true underlying function from a set of pregenerated data.
NNs have been used for modeling the Al3+ system,66 a
hydrocarbon potential,67 silicon,68 the H3

+ ion,67 and water.69,70

Here we employ NNs to learn the relationship between
the atomic multipole moments and the nuclear configuration
of its environment (which is the whole molecule for both
glycine and NMA). This makes possible a dynamic repre-
sentation of the electron density, able to react to changes in
the local environment. This eliminates the need for ad hoc
corrections32,71 that account for the overlap of electron
densities,72 an inevitable problem when using fixed densities.
Additionally, this NN approach allows us to incorporate the
effect of charge transfer into the prediction of the multipole
moments. Polarization and charge transfer are now treated
on a par with traditional electrostatic interactions, as a single
dynamic electrostatic term.

2. Background

2.1. Polarization. The effect of polarization is not neg-
ligible and is often quoted as accounting for ∼15% of the
total interaction energy,73,74 with Yu and van Gunsteren

quoting a range of 10-50% of the total interaction energy.75

Including polarization allows for the fluctuating anisotropic
nature of atomic electron densities to be correctly modeled,
which is important for the calculation of accurate interaction
densities and the accurate determination of the relative
stabilities of molecular conformations,76 polymorphs, and
molecular clusters.77 The importance of polarization can be
highlighted by the dipole enhancement of water molecules
transferred from the gas to the bulk phase.78-80

There are a number of methods for adding explicit
polarization to potentials, but the three main methods are
polarizable point dipoles, fluctuating charge models, and
Drude oscillators.

Polarizable point dipoles are represented by two point
charges. These dipoles then interact via a tensor just as static
multipole moments do. The magnitude of the dipole is a
response to an external field and is calculated iteratively as
molecules respond to mutual changes in charge distribution.
However, there is a danger of a “polarization catastrophe”,
which results from the polarization amplifying itself, causing
the interaction energy to become infinite. In the AMOEBA
model this is prevented by using a Thole-type damping
function.31,81-85 Within the SIBFA model, point dipoles are
distributed about the molecules and are placed at lone pair
centers and bond barycenters rather than nuclei.86 This
procedure is analogous to the placement of point dipoles in
the EFP model.87 In contrast to AMOEBA, the SIBFA model
tackles the polarization catastrophe by introducing a Gaussian
screening of the field. Piquemal et al.88 re-evaluated the
SIBFA polarization compared to its counterparts. Overpo-
larization at short distances can also be overcome by a new
method parametrizing a polarizable potential based on
Car-Parrinello simulations.89

Fluctuating charge models,90 or charge equalization,
iteratively modify atomic charges in response to an external
field. The TIP4P-FQ model of water91,92 is an early applica-
tion of this method. Its main disadvantage is that it only
accounts for isotropic polarization.

Drude oscillators,93 or charge-on-spring models, represent
polarization by two point charges that are tethered by a
harmonic spring potential. One of the charges is located at
a fixed position while the other is free to move in response
to an external field. This method allows for an anisotropic
polarization response.94-96

Another non-negligible energy component that is not
explicitly represented in nonpolarizable models is charge
transfer.97,98 Charge transfer is the partial transfer of charge
from a donor to an acceptor molecule, or between atoms,
and so affects the electrostatic interactions of the atoms. Thus
charge transfer is a more extreme case of polarization.99 To
the best of our knowledge, the only polarization scheme that
is currently able to incorporate charge transfer is the FQ
approach, which allows the atomic charges to change in
response to the chemical environment. Other models account
for the effect of charge transfer by including a further
component in the potential.34-36,100 There is an explicit
representation of the charge transfer term in the context of
SIBFA going back to 1982.101 Chen and Martı́nez made the
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important observation that the electronegativities that deter-
mine the charge transfer are geometry dependent.99

2.2. Quantum Chemical Topology and Electrostatic
Interaction. Topological atoms are naturally carved out by
gradient paths in the electron density. These paths of steepest
ascent typically originate at infinity and terminate at a
nucleus. They create surfaces that bound the electron density
that is then naturally allocated to each atom. An important
feature of topological atoms is that they do not overlap and
that they exhaust space (i.e., leave no gaps between them).
Atomic multipole moments are obtained by integrating the
appropriate property density over the atomic volume. The
property density is the total charge density multiplied by a
regular spherical harmonic,102 for example, 1/2(3z2 - r2) for
one of the five quadrupole moments.

The moments of atom A and B are designated as
QlAmA(ΩA) and QlBmB(ΩB), respectively, where the index l
refers to the rank of the multipole moment and m to the
component. Each atom has its own local axis system,
centered on its nucleus. The Coulomb interaction between
two atoms is then given by52

EAB )

∑
lA)0

∞

∑
lB)0

∞

∑
mA)-lA

lA

∑
mB)-lB

lB

TlAmAlBmB
(R) QlAmA

(ΩA) QlBmB
(ΩB) (1)

where T(R) is the interaction tensor and R the vector linking
the nuclear positions of the respective atoms (i.e., the origins
of their local frames). The terms of eq 1 can be collected
according to powers of R ) |R| by means of a rank called
L, which is defined as lA + lB + 1. For example, R-3

dependence is made up of interactions between two dipole
moments and between a monopole moment and a quadrupole
moment. The convergence of the multipole expansion can
be monitored against a varying rank L. Using Hättig’s
recurrence formula103 for the interaction tensor we can
generate expansions up to arbitrarily high rank. The exact
interaction energy can be obtained via a six-dimensional (6D)
integration over the two participating atoms,

EAB )∫ΩA
drA ∫ΩB

drB

Ftot(rA) Ftot(rB)

rAB
(2)

where rAB is the distance between two infinitesimally small
charge elements and Ftot is the total charge density.

2.3. Neural Networks. NNs, which have been the subject
of interest104-106 for many years, are a well-researched and
popular example of a machine learning technique. We can
only give a brief account here and refer to the Appendix
and the citations above for further detail. A NN is an array
of connected nodes, which pass information between them-
selves. Each node receives a number of inputs and sends an
output. The nodes sum their inputs, which are individually
multiplied by the relevant weights, and pass this sum through
a transfer function, which gives the output. It is the alteration
of these weights that allows a NN to learn functions.

The architecture of a network is defined by the number of
hidden layers and the number of nodes in the input, output,
and hidden layers. The hidden layer contains hidden nodes,
so-called because one does not have direct access to their

outputs for the purpose of training. Hence, they must develop
their own representation of the input.105 The hidden layer
enables the network to learn complex tasks by extracting
progressively more meaningful features from the input
patterns. One of the simplest is a single hidden layer
feedforward network (see Figure 1). In a feedforward
network the nodes only pass information to the next layer
and not back to a previous layer. To learn a mapping between
input and output patterns, the NN is presented with training
data. During the learning process the NN errors in predicting
(i.e., reproducing) the values of the training data are used to
alter the weights. This is called the backpropagation of errors
method. More details are given in the Appendix. The process
is repeated for every example in the training set before
beginning again, with each full pass of the training set being
called an epoch.

Each neuron receives a number (p) of inputs. Each input
(signal) is associated with a weight, which can be positive
(excitatory) or negative (inhibitory). The activation of neuron
k, denoted by ak, is then defined as the sum of the products
of the input and the corresponding weights wkj, or

ak )∑
j)0

p

wkjxj (3)

Note that, in general, the weight wkj is associated with the
connection between neuron j and neuron k. The actual output
of a neuron depends on its activation, which has to exceed
a given threshold θ for the neuron to fire. Here, the sigmoid
function σ acts as a nonlinear transfer function determining
how a neuron’s output depends on its activation. It is defined
in eq 4,

y) σ(a)) 1
1+ exp[-(a- θ)/F]

(4)

where F controls the shape of the sigmoid. In this work, the
output is a multipole moment of a given atom and the inputs
are coordinates of neighboring atoms.

To achieve the optimal NN for the prediction multipole
moments the architecture of the NN is modified, in this case,
only by varying the number of hidden nodes. The net’s
performance can also be improved by tuning two training
parameters, the learning rate and the momentum.105 Before
training the input data must be standardized (see Appendix),

Figure 1. Diagram of a feedforward NN with one hidden
layer. The gray circle is a hidden node, a square is a bias,
and each connection represents an adjustable weight. In this
work, the output is a multipole moment of a given atom and
the inputs are the coordinates of neighboring atoms.
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that is, transformed to dimensionless data that have a mean
value of zero and a standard deviation of one. The data are
then transformed to lie in the interval [0, 1] (i.e., normalized)
via eq 5,

xn )
(x- xmin)

(xmax - xmin)
(5)

where x is a standardized input, xn is a normalized input,
xmin and xmax are the minimum and maximum values,
respectively, and the subscript n refers to the normalization.

When training the NN we must consider its performance
using statistical measures. We make use of the r2 correlation
coefficient, which measures the linear relationship between
the predicted output and the desired output, defined in eq 6,

r2 ) 1- [ ∑
j)1

N

(aj - bj)
2

∑
j)1

N (aj - ( 1
N∑

j)1

N

aj))2] (6)

where aj is the target output, bj the predicted output, and N
the number of training examples. The denominator is
reminiscent of a standard deviation. An analogous test is
performed using a test set of data, unseen by the network
during its training. Here the test set has the same size as the
training set. The corresponding correlation coefficient is
referred to as q2.

When training a network one should be concerned about
generalization, which covers both overfitting and overtrain-
ing. Overfitting means that a net has too much flexibility
and thereby inappropriately accommodates all the noise and
intricacies in the data without regard for the underlying
trends.105 This undesirable effect can be detected if q2 turns
out to be much lower than r2. Overtraining can occur if the
training continues for too many epochs. It is then possible
that the net offers no predictive ability for examples that it
was not trained with. Rather than monitoring the number of
epochs, overfitting can again be detected by q2 being much
lower than r2. In summary, a properly generalized net (i.e.,
not suffering from overfitting or overtraining) has an r2/q2

ratio close to unity.

3. Computational Details

To properly calculate the interaction energies we must orient
the anisotropic atoms correctly. For a given atom we define
an atomic local frame (ALF), which is determined by the
connectivity of this atom. Next, the multipole moments of
this atom are defined with respect to its ALF. This orientation
procedure is adopted during the preparation of the training
data as well as during the deployment of the NNs as a way
to align the moments by the neural nets in an energy
minimization or a simulation. The ALF defines the rotation
of the predicted moments into the global frame in which the
molecule resides. The NNs knowledge of the local chemical
environment is stored in the ALF. In summary, the NN both
gains information from the ALF and predicts moments within
this ALF, in a unified and consistent way.

The method for determining an ALF uses the Cahn-Ingold-
Prelog rules for determining the absolute configuration of a

chiral center. Note that we do not use these rules to determine
the chirality of our atoms; we only adopt that part of the
rules that ranks groups (attached to a given atom) according
to priority. The central atom, whose moments are being
predicted, defines the origin of the ALF. The x-axis is
determined by the atom with the highest atomic number
neighboring the central atom. The xy-plane is then determined
by the neighboring atom with the next highest atomic
number. In the case of ambiguity, the Cahn-Ingold-Prelog
rules are able to decide which atom acquires priority by
inspection of the atomic number of the next or more distant
atoms. For terminal atoms the process is simpler because
the atom has only one connected neighbor, and hence this
atom defines the x-axis. To define the xy-plane we inspect
the atoms connected to the x-axis atom and, according to
the above rules, again determine the atom with the highest
atomic number. This atom defines the xy plane. This
procedure is illustrated in Figure 2.

Once the ALF is defined, the training data are generated.
The molecule is geometry- optimized to a local minimum
and the corresponding frequencies of the normal modes of
vibration are calculated. Then the molecule is distorted
randomly along the normal modes of vibration. Each normal
mode is distorted in turn by a random amount, according to
a randomly assigned sign of displacement, either positive
or negative. However, before the displacement is applied we
ensure that the total amount of energy does not exceed the
imposed limit of 20 kJ mol-1. If so, the distortion is
performed again. Figure 3 illustrates a set of geometries for
glycine and NMA, and their atomic labeling schemes used
throughout this article.

The number of molecular configurations (or geometries)
needed for the training of the NN depends upon its
architecture, in particular, its number of weights. As a general
rule, approximately 10 training examples (i.e., molecular
geometries) are required for every weight. Equation 7
provides the number of weights, Nweight, for a given archi-
tecture with Ninput input nodes, Nhidden hidden nodes, and Noutput

output nodes,

Nweight ) (Ninput + 1)Nhidden + (Nhidden + 1)Noutput (7)

One adds 1 before multiplication to account for a bias
weight. Note that bias nodes only feed connections forward;
they do not accept connections. In this study, Ninput ) 24
because glycine has 3N - 6 ) 3 × 10 - 6 ) 24 internal
degrees of freedom, and all these degrees are taken to
influence the multipole moments of a given atom. Invariably,
each multipole moment constitutes the single output for each

Figure 2. Glycine molecule rotated into two atomic local
frames. The left orientation is an example of an atomic local
frame for a terminal atom. The right orientation is an example
of an atomic local frame for a nonterminal atom.
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NN, hence, Noutput)1. Equation 7 then specializes to Nweight

) 26Nhidden + 1. Because the maximum number of hidden
nodes in this work is 10, the maximum number of weights
is 261 and hence an adequate number of training examples
is 2610. We generated enough training examples to accom-
modate the largest NN architecture we use.

Multipole moments up to the quadrupole are predicted
using the NNs. Higher order moments are not predicted but
instead are taken as fixed from the reference geometry (which
is local energy minimum). Each moment is predicted by a
single NN so there are nine NNs per atom: one for the
monopole, three for the dipole, and five for the quadrupole
moment.

The NN used to predict the atomic moments is selected
using the r2/q2 ratio and the NN parameters. The latter refer
to the number of hidden nodes, the momentum, and the
learning rate. The NN that has an r2/q2 ratio closest to unity
is selected regardless of that NN’s architecture. However, if
two architectures have the same r2/q2 ratio, then the NN with
the smallest number of nodes is selected. If the NNs have
the same r2/q2 ratio and number of hidden nodes, then the
one with the lowest momentum is selected.

The program GAUSSIAN03107 geometry-optimized gly-
cine and NMA, and calculated the frequencies for the normal
modes of vibration. The frequencies are then used to guide
the generation of the distorted structures. An energy limit
of 20 kJ mol-1 is imposed, and the molecule is randomly
distorted along the normal modes. This maximum distortion
energy is set so that the generated geometries are plausible.
The wave functions of each of the distorted geometries are
generated and are then used by the program MORPHY108

to compute the atomic multipole moments.

For this pilot study, all optimizations, frequency, and wave
function calculations were performed at B3LYP/6-
311+G(2d,p) level. The proposed method is purely based
on the electron density and hence does not depend on the
details of how this density was generated.

We generated 2610 distorted geometries for each atom
with 1305 geometries for NN training and 1305 as a test
set. A further 50 distorted molecules were kept in the global
frame (i.e., not rotated into an ALF). This set served as a
validation set. One could assess the NN’s performance by
means of a correlation coefficient along the lines of eq 6.
However, it is more informative to invoke the interaction
energy between a given atom and another atom to assess
the NN. For the validation set the true moments are
calculated from the wave functions and then used to calculate
the interaction energy between a subset of all possible atom
pairs in glycine. This subset consists of 23 pairs, which is
the total number of pairs (45 ) 10(10-1)/2) minus all 9
bonded (1-2) interactions and all 13 valence angle (1-3)
interactions. In other words, only the remaining 23 interac-
tions of the type 1-4 and 1-n (n g 4) were considered. For
glycine, these 23 true interaction energies are compared with
the interaction energies calculated using the NN predicted
moments. For NMA, this comparison involved 37 atom pairs.

Figure 4 outlines the data generation procedure. The boxes
represent steps that produce output used in the following
steps. The first step is the optimization of the molecule using
GAUSSIAN, which also computes the second derivatives
of the optimized structure. The latter are used to generate
the distorted structures in the second step. A single-point
calculation is performed for each distorted structure and the
corresponding wave function file passed on the program
MORPHY. The multipole moments of all atoms for each
distorted structure are calculated by MORPHY. The Carte-
sian coordinates are converted into internal coordinates,
which are then standardized and transformed (according to
eq 5) to attain a value between 0 and 1. The same
transformations are applied to the multipole moments. It is
these transformed internal coordinates and moment values
that are used as input for the NN training. We train a number
of nets, each with a different number of hidden nodes,
learning rate, and momentum. The net that gives the r2/q2

value closest to 1 is used for the moment prediction (see
above for refinements). Along with the NN predicted

Figure 3. Representative sets of glycine (left) and N-
methylacetamide (right) molecules distorted along their normal
modes of vibration. The reference (local) minimum energy
geometry is shown in bold. In the glycine set C4 defines the
origin, the O7 the x-axis, and O9 the xy-plane. For the
N-methylacetamide set C9 defines the origin, the N7 the x-axis,
and H10 the xy-plane. In the distorted structures only the atom
that defines the origin is in exactly the same position in each
structure, while the atoms that define the x-axis all have
slightly different positions on the x-axis due to the random
distortion applied to the bond. Similarly, the atoms which
define the xy-plane all have different positions in the xy-plane.

Figure 4. Steps used to create the data for NN training and
moment prediction. Black text in boxes represents programs
that produce output used by other programs. Grey text
represents the output of a program step that is used as input
in following programs.
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moments (monopole, dipole, quadrupole), the energy predic-
tion also uses the higher moments (octupole, hexadecapole)
of the optimized (reference) structure. In principle, all
moments could have been predicted by NNs, but their energy
contributions to 1-n (n g 4) interactions are small and hence
do not justify the concomitant computational overhead.

Nets with 4 to 10 hidden nodes are trained, with momenta
of 0.6, 0.7, 0.8, or 0.9, and a learning rate of 0.05 or 0.1.
Hence, for each net a total of 7 × 4 × 2 ) 56 nets were
trained. The number of epochs remained fixed at 100 000
for all training calculations.

4. Results and Discussion

Table 1a shows the parameters of the best NNs used to
predict the monopole moments of each atom in glycine. The
equivalent data for NMA are not shown since they are very
similar. The variation in any of the three parameters has
relatively little effect on the monopole prediction quality of
the NNs gauged by the r2 values. The correlation between
the monopole predicted by the NNs and the “true” moments
calculated by MORPHY is above 0.97 for each atom.
However, it is important to note that one cannot predict the
best performing NN parameters in advance, just based on
the local environment of each atom. The observed optimal
number of hidden nodes in the carbon NNs of glycine is 4
or 5 while the range for NMA is 4 to 9. The range for
hydrogen is 4 to 10 for both glycine and NMA. The number
of nodes for nitrogen in glycine and NMA is, respectively,
from 4 to 8 and from 4 to 6. The range for the glycine atoms
is 4 to 10 for NMA. The range of parameters used to predict

the moments of each atom in glycine and NMA is similar.
Any differences are due to the fact that the local chemical
environments of the carbon, nitrogen, and oxygen atoms are
not exactly alike.

Table 1b lists the NN parameters used to predict the
monopole, dipole, and quadrupole moments of the pivotal
R carbon (C3) in glycine. Each NN has 4 hidden nodes, and
8 out of 9 NNs have a learning rate of 0.05 (the other is
0.1). The monopole moment has the highest r2 and q2.
Typically, the r2 or q2 values decrease as the rank of the
moment increases. However, the r2 and q2 drops below 0.9
only for some of the quadrupole moments. The Q21c and
Q22s moments have the lowest r2 and q2 values. Though
we do not list the optimal NN parameters of NMA here,
their values and the r2 and q2 values are similar to those of
glycine. In NMA, like in glycine, some quadrupole moments
(of C1) have r2 and q2 values below 0.9.

Prediction of multipole moments using NNs and internal
coordinates as input is clearly successful, as judged by
inspecting the values of the moments themselves. A less
direct but physically more valuable way of assessing the
performance of the NNs is to look at interatomic interaction
energies.109 The advantage of this assessment is that one can
gauge the NN’s quality in terms of a single number, namely,
energy. The disadvantage is the need to identify other atoms
as partners interacting with the central atom for which the
NN is set up. Before we analyze the NNs according to errors
in energy we must address the technical but paramount issue
of convergence control.

A truncated multipole expansion always produces an error
compared to the exact interaction energy. Previously we have
monitored110 how energies vary with (expansion) rank L.
Factors such as internuclear distance, relative orientation,
atomic shape, and the magnitude of the electronic density
all determine if the expansion is convergent or not. Compar-
ing the energy profiles calculated from the true multipole
moments with the profiles from NN predicted moments
reveals how much of the energy differences are due to the
prediction error, rather than to an inherent convergence error.
To investigate the convergence behavior of the 23 atom-atom
interactions in glycine, the energy of each interaction was
calculated up to L ) 20. Figure 5 shows the interaction

Table 1. (a) Optimization of the NN Parameters Used To
Predict the Monopole Moments of Each Atom in Glycinea

and (b) NN Architectures Used To Predict the Multiple
Moments of C3

(a)

atom Nhidden
b momentum learning rate r2 q2

C3 4 0.6 0.05 0.983 0.976
C4 4 0.7 0.05 0.996 0.995
H2 9 0.6 0.05 0.999 0.999
H5 4 0.6 0.05 0.993 0.993
H6 5 0.9 0.10 0.993 0.992
H8 8 0.8 0.10 0.999 0.999
H10 6 0.9 0.10 1.000 0.983
N1 4 0.6 0.05 0.998 0.997
O7 9 0.7 0.05 0.999 0.999
O9 5 0.8 0.10 0.998 0.998

(b)

C3 Nhidden
b momentum learning rate r2 q2

q 4 0.6 0.05 0.983 0.976
µx 4 0.6 0.05 0.932 0.903
µy 4 0.7 0.05 0.940 0.911
µz 4 0.6 0.10 0.921 0.880
Q20c 4 0.7 0.05 0.978 0.975
Q21c 4 0.6 0.05 0.776 0.627
Q21s 4 0.8 0.05 0.868 0.801
Q22c 4 0.8 0.05 0.986 0.981
Q22s 4 0.6 0.05 0.726 0.627

a The correlation coefficients r2 and q2 are explained in the
main text. b Number of nodes in the hidden layer (see eq 7).
c Notation of ref 29 is adopted for the five quadrupole moments.

Figure 5. Electrostatic interaction energy (kJ mol-1) of three
representative nonbonded interactions in glycine versus rank
L; for visual convenience, all energies are relative to the
energy at rank L ) 1 (charge-charge), the largest energy
contribution. The N1-O9 interaction is marked by red squares,
O7-H10 by green triangles, and C3-H10 by blue diamonds.
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energy as L is increased for three representative atom-atom
interactions. All interactions studied here are convergent
including N1-O9, the highest energy (501 kJ mol-1) interac-
tion, and O7-H10, the lowest (-447 kJ mol-1). Of all the
interactions studied, the O7-H10 interaction also has the
shortest internuclear distance in the reference geometry (2.27
Å).

At rank L ) 1 the energy represents the charge-charge
interaction, L ) 2 also includes the energy of the charge-
dipole interaction, and L)3 includes the charge-quadrupole
and dipole-dipole interaction energy. Figure 5 shows how
the interaction energy behaves asymptotically beyond L )
5, where the change in interaction energy is exceedingly
small, less than 0.02 kJ mol-1. This indicates that the
interaction has practically converged. Although Figure 5 only
shows three energy profiles, these are representative of 1-4
interactions in glycine and NMA. By visual inspection all
interactions converged in glycine and NMA.

Figure 6 shows the interaction energy as a function of
expansion rank L for four 1-4 atom-atom interactions,
namely, N1-O9 (2.73 Å, termini) in glycine, O7-H10 (2.27
Å, carboxy group) in glycine, and O2-H8 (3.11 Å, peptide
bond) and C3-C9 (3.79 Å, CR-C′R) in NMA. The blue bars
in the histograms demonstrate how well the NNs predict the

monopole, dipole, and quadrupole moments. The bars
indicate the energy difference between the true energy
(obtained with all true moments up to hexadecupole) and
the energy calculated from the NN predicted moments (with
true octupole and hexadecupole). All energy differences are
of the order of tenths of a kJ mol-1 or less. They vary very
little with the expansion rank L. This means that already at
L ) 1 (charge-charge) most of the energy difference is
present.

Figure 6 also shows the effect on the energy of removing
the higher moments (octupole and hexadecupole), as marked
by the red bars (horizontal stripes). They show how the
energy deviates from the true one, when using the true
monopole, dipole, and quadrupole moment. This deviation
can be as high as over 6 kJ mol-1 for the N1-O9 interaction
in glycine, which is reaffirmed in the O2-C9 interaction in
NMA (not shown). Fortunately, the deviation is about an
order of magnitude smaller in the CR-C′R interaction in
NMA, as well as in the peptide bond (O2-H8). The green
bars are the equivalent of the red ones, where the true
monopole, dipole, and quadrupole moments are replaced by
the NN predicted ones. The green bars echo what was
concluded based on the red ones.

Figure 6. Interaction energy (kJ mol-1) as a function of expansion rank L for four 1-4 atom-atom interactions. (a) N1-O9 in
glycine, (b) O7-O10 in glycine, (c) O2-H8 in NMA, (d) C3-C9 in NMA. All energies are relative to the expansion energy calculated
using the true moments (monopole, dipole, quadrupole, octupole, and hexadecapole). The blue bar represents the energy
calculated from NN-predicted moments (monopole, dipole, and quadrupole) and (fixed) higher moments from the reference
geometry. The red bar represents the energy calculated from the true monopole, dipole, and quadrupole moments, without
higher moments. The green bar is the energy calculated from the NN-predicted moments only (monopole, dipole, and quadrupole),
without higher moments.
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Now that we have shown that the nonbonded interactions
are convergent we can use predicted moments in the
multipolar expansion to calculate the interaction energies.
We assess the performance of the NN by measuring the
discrepancy between true and predicted energy. Each of the
23 (nonbonded) interactions in glycine is monitored by an
energy error distribution over the external validation set of
50 distorted molecular geometries. The quality of the 50
predictions for each interaction can be measured by the
minimum and maximum error, the error range, and the error
averaged over the 50 predictions. This information is given
in Table 2 for glycine and for the 37 nonbonded interactions
in NMA. The glycine interactions cover an energy range of
948 kJ mol-1. The most attractive interaction is O7-H10

(carboxylic oxygen and hydroxyl hydrogen) with an energy
of -447 kJ mol-1, while the most repulsive interaction is
between N1 and O9 (501 kJ mol-1). The N1-O9 interaction
has the largest average absolute energy difference (Ediff) of
2.7 kJ mol-1. However, this represents a difference of just
0.5% between the true energy (Etrue) and predicted energy
(Epredicted). Although this interaction has the greatest Ediff it
is a small fraction of the total interaction energy (Eint). The
interactions of glycine have an average Ediff of 0.2 kJ mol-1,
and the largest Ediff is just under 1 kJ mol-1. Three
interactions have an Ediff of 0.5 kJ mol-1 or greater, and four
have an Ediff greater than 0.2 kJ mol-1. A general observation
is that as Eint increases so does Ediff. The range of energy
differences (“Ediff range” in Table 2) gives an indication of
how consistent the energy prediction is. Ideally Ediff and the
Ediff range would both be zero but this is not the case. Again,
as Ediff increases so does the “Ediff range”.

The nonbonded interactions of NMA have an energy range
of 281 kJ mol-1, which is more than three times smaller
than the range for glycine. The average Ediff is 0.2 kJ mol-1,
which is remarkably similar to glycine’s value. The most
attractive interaction is O2-H8 (located in the peptide bridge),
which has an Eint of -217 kJ mol-1. The most repulsive
interaction is C1-H12 (64 kJ mol-1). Here the interaction
with the second highest Eint value, O2-C9, has the highest
Ediff value, that is, 1.1 kJ mol-1. The C3-H8 interaction has
the second highest Ediff of 0.5 kJ mol-1. As with glycine
NMAs, Ediff and “Ediff range” increase as the absolute value
of Eint increases.

Overall, Table 2 shows that the predicted energies are in
good agreement with the true energy. Also, the predicted
moments can reproduce interactions over a large energy
range. For example, the O7-H10 of glycine has an Eint of
-447 kJ mol-1, but O7 also interacts with N1 and this
interaction has an energy of 437 kJ mol-1. This corresponds
to an energy range of 884 kJ mol-1.

Now we look at the sum of all nonbonded interaction
energies of glycine and NMA for each of the 50 distorted
molecules. Figure 7 shows the absolute energy difference
(Ediff) between the total expansion and the total predicted
nonbonded energy as well as the percentage difference. The
total nonbonded interaction energy (“Etrue total”) of the 50
distorted glycine molecules has a range of 143 kJ mol-1

(from 229 to 371 kJ mol-1). The total predicted nonbonded
interaction energy (“Epredicted total”) has a range of 143 kJ

mol-1 (from 227 to 370 kJ mol-1). The average energy
difference (Ediff) is -0.3 kJ mol-1, and the minimum and
maximum Ediff values are -4.7 and 4.0 kJ mol-1, respec-
tively. NMA has an average Etrue of -511 kJ mol-1 and a
range of 156 kJ mol-1 (from -591 to -435 kJ mol-1). The
average Ediff for each interaction of NMA is 0.2 kJ mol-1.
The minimum and maximum Ediff values are 0.0 and 3.5 kJ
mol-1, respectively.

Table 2. Interaction Energy (Eint), Absolute Energy
Difference between True and Predicted Interaction Energy
(Ediff), Averaged over a Set of 50 Distorted Geometries,
Minimum and Maximum Absolute Energy Difference, and
the Range of Interaction Energy Differences of (a) Glycine
and (b) N-Methylacetamide Moleculesa

interaction Eint Ediff Min Ediff max Ediff Ediff range
(a)

C3-H10 85.92 0.62 0.07 1.86 1.79
C4-H8 219.27 0.35 0.01 1.44 1.42
C4-H2 273.27 0.54 0.00 1.59 1.59
H2-H10 85.94 0.04 0.00 0.36 0.36
H2-H5 14.86 0.05 0.00 0.15 0.14
H2-H6 9.50 0.07 0.00 0.19 0.19
H2-O7 -157.23 0.06 0.00 0.69 0.69
H2-O9 -208.27 0.22 0.02 1.10 1.08
H5-H10 15.77 0.05 0.00 0.20 0.19
H5-H8 15.83 0.08 0.00 0.24 0.24
H5-O7 -45.93 0.16 0.00 0.60 0.60
H5-O9 -38.03 0.13 0.00 0.48 0.48
H6-H10 7.55 0.06 0.00 0.17 0.17
H6-H8 9.26 0.08 0.00 0.19 0.19
H6-O7 -22.62 0.19 0.01 0.48 0.47
H6-O9 -19.97 0.17 0.00 0.53 0.53
H8-H10 64.34 0.03 0.00 0.16 0.16
H8-O9 -147.92 0.10 0.00 0.38 0.38
N1-H10 -212.53 0.17 0.00 0.59 0.59
N1-O7 437.17 0.36 0.03 1.15 1.12
N1-O9 501.26 0.97 0.01 2.70 2.69
O7-H10 -446.56 0.31 0.02 0.57 0.55
O7-H8 -137.97 0.06 0.00 0.23 0.23

average 13.17 0.21 0.01 0.70 0.69
min -446.56 0.03 0.00 0.15 0.14
max 501.26 0.97 0.07 2.70 2.69
range 947.82 0.94 0.07 2.56 2.55

(b)
C1-H10 43.60 0.34 0.01 1.56 1.54
C1-H11 32.65 0.21 0.00 2.40 2.40
C1-H12 63.93 0.34 0.00 1.51 1.50
C3-C9 -7.60 0.26 0.03 0.93 0.90
C3-H10 -1.04 0.03 0.00 0.21 0.21
C3-H11 -0.78 0.03 0.00 0.15 0.15
C3-H12 -1.60 0.04 0.00 0.25 0.25
C3-H8 -15.23 0.53 0.00 1.64 1.63
H4-C9 8.66 0.05 0.00 0.19 0.19
H4-H10 1.14 0.01 0.00 0.06 0.06
H4-H11 0.86 0.01 0.00 0.10 0.10
H4-H12 1.72 0.01 0.00 0.06 0.06
H4-H8 13.37 0.07 0.00 0.23 0.23
H4-N7 -39.48 0.27 0.01 1.09 1.08
H5-C9 3.94 0.06 0.00 0.22 0.22
H5-H10 0.49 0.01 0.00 0.04 0.04
H5-H11 0.39 0.01 0.00 0.07 0.07
H5-H12 0.74 0.01 0.00 0.07 0.07
H5-H8 5.83 0.13 0.00 0.52 0.52
H5-N7 -18.99 0.38 0.03 1.51 1.49
H6-C9 6.98 0.06 0.00 0.22 0.22
H6-H10 0.91 0.01 0.00 0.05 0.05
H6-H11 0.69 0.01 0.00 0.06 0.06
H6-H12 1.36 0.02 0.00 0.10 0.10
H6-H8 11.19 0.11 0.00 0.42 0.42
H6-N7 -32.52 0.34 0.02 1.20 1.18
H8-H10 13.25 0.09 0.00 0.49 0.49
H8-H11 10.84 0.09 0.00 0.98 0.98
H8-H12 17.63 0.07 0.00 0.23 0.22
O2-C9 -201.58 1.12 0.01 3.49 3.49
O2-H10 -29.48 0.24 0.00 1.21 1.20
O2-H11 -22.30 0.13 0.01 1.75 1.74
O2-H12 -45.29 0.27 0.00 0.94 0.93
O2-H4 -53.31 0.30 0.00 1.13 1.13
O2-H5 -24.25 0.28 0.00 0.97 0.96
O2-H6 -40.84 0.43 0.02 1.58 1.56
O2-H8 -217.36 0.25 0.01 0.82 0.82

average -13.82 0.18 0.00 0.77 0.76
min -217.36 0.01 0.00 0.04 0.04
max 63.93 1.12 0.03 3.49 3.49
range 281.29 1.12 0.03 3.45 3.45

a All energies in kJ mol-1.
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We initially carried out this work at the HF/6-31G(d) level
of theory. The HF method is known to overestimate charge
transfer in molecules, witnessed by the exaggerated atomic
charges compared to those calculated with Møller-Plesset
perturbation theory.111 We have also observed an increase
in QCT charges in going from a B3LYP wave function to a
HF one. These increased charges mostly lead to increased
interaction energies. For example, the total nonbonded
interaction energy for the local reference structure of glycine
increases from 310 kJ mol-1 using B3LYP moments to 658
kJ mol-1 using HF moments, and the energy range increases
from 143 kJ mol-1 to 250 kJ mol-1. This increase is most
noticeable when the individual interactions are considered.
The average C3-H10 interaction energy of glycine increases
from 86 kJ mol-1 to 155 kJ mol-1, a 80% increase, which
is the largest change observed. However, not all of the
interactions increase in energy. If the interaction has an
absolute value less than 50 kJ mol-1, then the interaction
increases in magnitude; that is, repulsive interactions become
more repulsive and attractive interactions more attractive.
However, as these interactions are smaller in magnitude the
cumulative effect of using B3LYP moments rather than HF
moments is to lower the overall interaction energies for
glycine and NMA.

The current method uses NNs to capture the relationship
between the local chemical environment of an atom and the
polarization of that atom. We now look at how this internal
polarization affects the interaction energy. We calculated the
energy including polarization using the original (i.e., “true”)

moments calculated for each of the 50 distorted geometries
of glycine. These energies are our reference. To calculate
the energy excluding polarization we use the moments from
the local reference structure in place of the true moments of
the distorted molecules. The reference moments are rotated
into the correct local frame in each molecule before the
energy is calculated. The polarization contribution to the total
nonbonded energy and to each of the 23 interactions in
glycine is shown in Figure 8.

The polarization energy (Epol) shows great variation. In
12 out of 23 interactions Epol is negative; that is, the energy
excluding polarization is higher. In 11 interactions Epol is
less than 1 kJ mol-1, and only three interactions (four when
including the total interactions) have an Epol greater than 5
kJ mol-1. The Epol for the total nonbonded interaction energy
is 12.7 kJ mol-1 or 4.2%. The origin of 90% of Epol is due
to the difference in charge-charge energy between the two
atoms. This is seen for each interaction regardless of the types
of atoms that are interacting. Hence, interactions between
atoms with large charge differences will have the largest Epol.
The N1-O9 interaction has an Epol of 17.4 kJ mol-1 which
is the largest Epol for any interaction (including the total
energy). For atoms which have similar charges, such as C
and H, Epol is small.

The current method has advantages and limitations. An
advantage is that the approach is not limited to a single
method for predicting the moments. Alternative machine
learning methods can be used in place of the backpropagation
NNs, which we have started to investigate. Second, the atoms
and their polarization are independent of each other. So,
adding new atoms or updating existing ones can be done
without having to modify the existing atoms. For example,
there is no need to retrain the NNs for a carbonyl carbon
when retraining the oxygen because the training sets are
independent of each other. Moreover, different moments can
be predicted by different machine learning techniques. Third,
charge transfer, which normally receives a separate treatment
compared to dipolar polarization, is now a unified and
streamlined part of general multipolar polarization. A current
limitation is the CPU cost of the data preparation and
training. The exact amount of time needed depends on the
number of inputs required to maintain a ratio of 10 examples
for each NN weight. Generating the wave functions accounts
for ∼25% of the total time needed, calculation of the
moments ∼65%, and the NN training the remaining ∼10%.
Another current limitation is the lack of optimization of the
polarization procedure. Just to demonstrate the proof-of-
concept of this novel technique we use all internal coordi-
nates as input for the moment prediction. In some cases this
may mean that each atom is given more information than is
necessary to correctly predict that atom’s moments.

In terms of future work, we have just begun to address
these limitations. The ultimate goal is to describe polarizable
electrostatics in arbitrary amino acids and peptide bonds.
Using all internal coordinates, in light of our ultimate goal,
means that the NNs are not transferable to other similar atoms
in different molecules. Transferability of atom types is a key
feature of force fields, and using transferable NNs is one of
our aims. Creation of transferable NNs will require a method

Figure 7. Total absolute interaction energy difference of each
of the 50 distorted glycine molecules for 1-n interactions (n g
4). The absolute energy difference is |Etrue - Epredicted|, where
Etrue is the expansion energy calculated using the true
moments and Epredicted is the energy calculated using the NN
predicted moments. The percentage difference refers to
absolute differences.
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for feature selection before the NN training. This is currently
being investigated. Also, we have not yet investigated the
performance of the predicted moments over the torsional
space covered by known protein structures. We are in the
process of testing the performance of our method using larger
structures. We should also mention that we have obtained
successful preliminary results of the current methodology
being tested on water clusters. It is important that this
methodology will be able to tackle amino acids and water
in a unified manner to deliver a reliable protein solvation
model.

5. Conclusions

Intramolecular polarization changes an atomic electron
density in response to a variation in the positions of the
neighboring atoms. We propose a novel method that captures
this change directly, by following the change in the atomic
multipole moments that express the atomic electron density.
Quantum chemical topology provides the partitioning scheme
to define the atoms. On the basis of the pilot systems glycine
and NMA, we prove that NNs are able to predict with good
accuracy the change in atomic monopole, dipole, and
quadrupole moments upon changes in molecular configura-
tion. This approach puts charge transfer and dipolar (and
high rank multipolar) polarization on a common footing. The
current proof-of-concept opens the avenue for a realistic and
integrated methodology for a peptide/protein force field, with
“informed” atoms that can rapidly and correctly adjust their
electronic features to a given environment.
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Appendix

It is convenient to place the adaptation of the threshold on
the same footing as that of the weights. This is simply
achieved by thinking of the threshold as an extra weight that

is driven by an (artificial) input constantly tied to the value
-1. This leads to the negative of the threshold being called
the bias. The transfer function limits the output of the node
to a set range, typically between 0 and 1 or between -1 and
+1. To modify the weights of the NN is presented a training
data set, with known inputs and outputs. The weights of the
NN are modified based upon the error between the prediction
made for the examples in the training set and the actual
desired output. This type of training is known as superVised
learning. Training continues for a number epochs as the
weights are changed and the NN learns from the training
set.

The error based upon the output of the final layer of the
NN is fed back through the NN, determining the local
gradients of the network as we step back through the
network. We have to make use of this gradient as we have
no knowledge about the true output for each of the hidden
layers. This method is known as back-propagation of errors.
This process is continued for every example in the data set
in an effort to produce results converging upon the function
that replicates the relationship between the inputs and the
outputs. To begin training the network the weights are
randomly initialized. The first step is the network performing
a forward pass on a training example and finding a final
prediction y. From this the error is calculated via eq A1,

ek(n)) dk(n)- yk(n) (A1)

where ek(n) is the output error and dk(n) is the desired output.
This error is then sent back through the network,and the local
gradient is calculated, if F is set equal to 1 in eq 4,

∂yk(n)

∂ak(n)
)

exp(-aj(n))

[1+ exp(-aj(n))]2
(A2)

∂yk(n)

∂Vk(n)
) yk(n)[1- yk(n)] (A3)

δk
(L)(n)) ek

(L)(n)
∂yk(n)

∂ak(n)
(A4)

Figure 8. Average energy difference (Epol in kJ mol-1) between the true and the nonpolarized interaction energies of 50 distorted
glycine molecules. The numbers above the bars mark the average percentage difference.
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The above is only applicable to the final layer of neurons
as ek

(L) cannot be defined for a hidden layer. Instead the local
gradient is found via eq A5,

δj(n))
∂yj(n)

∂aj(n)∑k

δk(n) wkj(n) (A5)

or it can be expressed as the following equation:

δj(n)) yj(n)[1- yj(n)]∑
k

δk(n) wkj(n) (A6)

The calculation of the local gradients can then be used to
determine the changes to the weights.

wkj
(l)(n+ 1))wkj

(l)(n)+R[wkj
(l)(n)-wkj

(l)(n- 1)]+

ηδj
(l)(n) yi

(l-1)(n) (A7)

where R is the momentum and η is the learning rate. The
learning rate controls the magnitude of the changes made to
the weights and has a range between 0 and 1. Large changes
to the weights mean that the network is not trapped in local
minima on the error surface, though the minima may be
missed. However, if smaller changes are used then there is
less chance that the true minima is missed, though training
is slower. The momentum links changes to the weights to
the change that took place previously. This ensures that the
weights are changed by the necessary magnitude. For
instance, if the two previous weights were of the same sign
then a large change is expected; however, if the signs were
different then the changes made are small. The momentum
term accelerates the gradient descent or stabilizes the learning
in regions where the sign oscillates.

Standardization is a transformation of the data to dimen-
sionless data, shown in eq A8,

xst,i )
(xi - x)

σn
(A8)

where the standard deviation is σn ) �[(1/N)∑i)1
N (xi - xj)2]

and xj is the mean. It is easy to prove that the mean of
the standardized data is zero and their standard deviation
one.
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Abstract: A set of 41 metal-ligand bond distances in 25 third-row transition-metal complexes,
for which precise structural data are known in the gas phase, is used to assess optimized and
zero-point averaged geometries obtained from DFT computations with various exchange-
correlation functionals and basis sets. For a given functional (except LSDA) Stuttgart-type quasi-
relativistic effective core potentials and an all-electron scalar relativistic approach (ZORA) tend
to produce very similar geometries. In contrast to the lighter congeners, LSDA affords reasonably
accurate geometries of 5d-metal complexes, as it is among the functionals with the lowest mean
and standard deviations from experiment. For this set the ranking of some other popular density
functionals, ordered according to decreasing standard deviation, is BLYP > VSXC > BP86 ≈
BPW91 ≈ TPSS ≈ B3LYP ≈ PBE > TPSSh > B3PW91 ≈ B3P86 ≈ PBE hybrid. In this case
hybrid functionals are superior to their nonhybrid variants. In addition, we have reinvestigated
the previous test sets for 3d- (Bühl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2,
1282-1290) and 4d- (Waller, M. P.; Bühl, M. J. Comput. Chem. 2007, 28, 1531-1537) transition-
metal complexes using all-electron scalar relativistic DFT calculations in addition to the published
nonrelativistic and ECP results. For this combined test set comprising first-, second-, and third-
row metal complexes, B3P86 and PBE hybrid are indicated to perform best. A remarkably
consistent standard deviation of around 2 pm in metal-ligand bond distances is achieved over
the entire set of d-block elements.

Introduction

Quantum-chemical calculations require additional approxi-
mations to account for relativistic effects when heavier atoms
are present. One of the most popular of these approximations
is the pseudopotential or effective core potential (ECP)
approach,1 where the innermost electrons are not treated
explicitly but subsumed into a specially designed, mean
potential acting upon the outer electrons. This ECP can be
adjusted numerically such as to account for the leading scalar

relativistic effects in the core region even in an otherwise
nonrelativistic calculation. Pseudopotentials have fertilized
many fields of applied theoretical chemistry and are now in
widespread use.

Initially designed at the Hartree-Fock level, ECPs and
their corresponding valence basis sets were readily embraced
by the ever growing community that uses density functional
theory (DFT) in its many flavors. Computational transition-
metal chemistry in particular has benefited a lot from this
development.2 From the competing brands of ECPs, two
suppliers appear to dominate this market, namely the Hay-
Wadt3 and Stuttgart-Dresden4 variants,1 both of which have
performed very well in countless validation studies. In
contrast, the choice of a suitable exchange-correlation
functional from the plethora of vendors is more difficult, first
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because of the vast supply of such functionals, and second
because their performance may strongly depend on the
particular application.

Regardless of their nature, such applications need accurate
molecular structures as inputs. We have become interested
in assessing the ability of modern DFT methods to reproduce
gas-phase geometries of transition-metal complexes in a
straightforward, consistent manner. For this purpose, we
selected sizable test sets of target molecules, for which
reasonably precise and, presumably, accurate structural data
are available from gas-phase electron diffraction (GED) or
microwave (MW) spectroscopy. In the spirit of Helgaker et
al.,5,6 the performance of several density-functional/basis-
set combinations is assessed by correlating computed with
experimental bond distances and analyzing the resulting mean
and standard deviations. Only bond distances refined ex-
perimentally to a precision better than 1 pm are included in
this analysis. We have previously reported such assessments
for first-7 and second-row8 transition-metal complexes, which
have revealed subtle differences in the performance of
standard density functionals for these two sets. We now
extend these studies to complexes from the third transition
row. This now allows comprehensive performance tests for
computational methods to describe molecular structures that
contain metal centers from the whole d-block.

Not only quantum-chemical models such as specific
exchange-correlation functionals can be tested this way but
also the approximations made to account for relativity. There
is growing interest to go beyond the ECP model and to
describe all electrons in an explicit relativistic treatment.
While full four-component relativistic calculations are still
extremely involved and feasible only for atoms and the
smallest molecules, two-component variants have evolved
to a point that allows their rather routine application to sizable
systems. In practice, unless the elements are very heavy the
effect of spin-orbit coupling on molecular geometries is
limited.9,10 This suggests that more straightforward and
computationally less involved one-component scalar rela-
tivistic approaches are the methods of choice for all-electron
calculations on third-row transition metals. The advantages
of all-electron treatments are obvious if total electron
densities are to be computed11 or-in particular-if spectro-
scopic properties are computed that depend on the inner-
shell electrons or the nodal properties of the valence orbitals.
This concerns for example X-ray absorption,12 Mössbauer13

and nuclear magnetic14 or electron paramagnetic resonance15,16

properties. However, rather special basis sets must be used
in all-electron scalar relativistic calculations that are con-
sistent with the relativistic treatment invoked. Such special
basis sets have been designed previously for calculations
within the Douglas-Kroll-Hess (DKH)17 or the zeroth order
regular approximation (ZORA)9,18 treatments. However, as
far as Gaussian basis sets are concerned, these basis sets are
generally contracted and therefore computationally expen-
sive. We have therefore recently reported a series of
segmented all electron relativistic (SARC) basis sets for third-
row transition metals that can be applied together with the
DKH2 and ZORA approaches.19 Atoms from the first three
rows are treated with relativistic recontractions of the

Karlsruhe split valence (SV), triple-� valence (TZV), or
quadruple-� valence (QZVP) all-electron basis sets.20-22

In ref 19, geometries of small transition-metal hydrides,
ionization potentials, and binding energies were calculated
with the new basis sets and either B3LYP density functional
or coupled-cluster with single-, double-, and perturbative
triple excitations (CCSD(T)) methods. Here we take the
opportunity to compare the performance of all-electron scalar
relativistic DFT calculations with ECPs for a much broader
range of functionals relative to precise gas-phase structural
data of polyatomic molecules. Thus, the present study serves
the triple purpose of (a) evaluating the performance of ECP
based DFT calculations for the prediction of geometries of
third-row transition metals (b) to compare the relative merits
of ECP based and scalar-relativistic all-electron calculations
throughout the d-block and (c) to evaluate the performance
of the SARC all-electron basis sets for 3d-, 4d-, and 5d-
transition-metal geometries.

The test set for the 5d metals is shown in Scheme 1. It
comprises complexes of the metals from Hf to Hg, for which
quite precise experimental data are available from gas-phase
electron diffraction (GED) and/or microwave spectroscopy
(MW). This test set should be diverse enough to cover a
wide range of bonding situations, from complexes of high-
valent early transition metals with electronegative ligands
to electron-rich organometallic compounds of middle or late
transition metals, including complexes with hydride and
phosphine ligands and one with a metal-metal bond.
Drawing from a large compilation of gas-phase structures,23

we chose complexes for which at least one metal-ligand
bond length was determined with a precision better than 1
pm, affording a final set of 25 molecules with 41 individual
bond distances with that precision, which should be sufficient
for reasonable statistics. We also report computed zero-point
corrections to the bond distances24,25 for this data set in order
to furnish increments to estimate rg

0 from re values,26 thus
facilitating the comparison between theory and experiment.

Computational Details

Geometries were fully optimized in the given symmetry (as
given in Table 1) using Gaussian 0327 and several local
(LSDA)28 and gradient-corrected density functional combi-
nations as implemented therein. Most functionals are com-
posed of one of several exchange parts, namely Becke (B)29

or Becke hybrid (B3),30 together with one of several
correlation parts, namely Perdew (P86),31 Perdew-Wang
(PW91),32 or Lee et al. (LYP)33 (in parentheses: symbols
used in combined forms). Other functionals comprise HCTH/
407 (denoted HCTH)34 and the PBE hybrid functional37

(denoted PBE1, Gaussian keyword PBE1PBE, which is often
called PBE0) as well as the meta-GGAs VSXC,36 TPSS,37

and TPSS hybrid (denoted TPSSh).38 A fine integration grid
(75 radial shells with 302 angular points per shell) has been
used, except for VSXC, which has been shown to require
finer grids,39 and for WMe6, where spurious imaginary
frequencies were found with the default grid; in these cases
we used 99 radial shells with 590 angular points. The
following relativistic small-core ECPs with the corresponding
valence basis sets were employed on the metals: SDD4 i.e.,
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the Stuttgart-Dresden ECP (together with the [6s5p3d]
valence basis) and LANL2DZ3 (with [3s3p2d] valence basis).
On the ligands, the 6-31G/ basis40 was used, except for
Hf(BH4)4 and WCp2H2, where 6-31G// was employed for
the ligands with a metal-hydrogen bond. In addition, we
tested Ahlrichs-type valence basis sets that had been designed
for the use with the SDD ECPs,41 denoted SVP, TZVP, and
QZVP (with [5s3p2d1f], [6s4p3d1f], and [7s5p4d3f1g]
contractions for the metals, respectively), together with the
corresponding all-electron bases on the ligands.20-22 The
minimum character of all optimized structures was verified
by evaluation of the harmonic vibrational frequencies at the
BP86/SDD level. Closed- and open-shell species were treated
with restricted and unrestricted formalisms, respectively. For
the computation of effective geometries via the cubic force
field, the Barone method25 was invoked at the BP86/SDD
level within Gaussian 03 rev D.01.27 The default values were
used for step size in the numerical differentiation (0.025 Å)
and integration grid (SG1).

Scalar relativistic all electron calculations have been
performed with the ORCA program package42 within the
ZORA approximation. In our experience ZORA and DKH2
geometries are usually almost indistinguishable. For technical
reasons, the relativistic corrections have been performed
within the one-center approximation that has previously been
shown to be adequate.43 Geometries have been optimized
without constraints due to point symmetry, using the ‘pure’

GGA and meta-GGA functionals (LSDA, BP86, PBE, and
TPSS) as well as a variety of hybrid functionals (B3LYP,
B3P86, B3PW91, TPSSh, and PBE1). The integration grid
was increased to span 80 radial shells and 302 angular grid
points. The influence of the empirical van der Waals
correction according to Grimme44 has been studied for BP86,
PBE, TPSS, and B3LYP. In all ZORA calculations, the
recently published SARC basis sets19 of TZVP quality has
been used for the third-row transition metals and SARC
recontractions of the Karlsruhe TZVP basis set for the lighter
atoms. For two molecules (ReOCl4 and IrF6), spin-unre-
stricted open-shell calculations have been performed.

Results and Discussion

Selection of Reference Values. In addition to the precision
criterion mentioned in the Introduction, we limited our
selection to molecules measured at room temperature or
slightly above. In some cases, not all degrees of freedom
have been refined experimentally, or only mean values for
formally nonequivalent distances are known to the desired
precision. In those cases, we evaluated and assessed the same
average of the corresponding optimized parameters, even
though full geometry optimizations were performed. This
applies to Os(CO)5 and WMe6. The GED data of the latter
were initially refined assuming equal W-C distances; later
it was shown that this molecule adopts a structure with lower

Scheme 1
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symmetry and two sets of nonequivalent W-C bonds.53

Allowing for fluxional behavior in the gas phase, the refined
mean value is probably sufficiently precise. Another such
case is TaCl5, where two GED studies48a,b have reported
almost identical mean values of equatorial and axial bonds
but disagree markedly on their difference (which varies
between 4.7 pm48a and 14.2 pm48b). It is probably the
fluxional behavior of this molecule with its very low Berry
pseudorotation barrier48b that makes the actual precision of
the individual bond distances somewhat lower than suggested
by the quoted standard deviations (which are all well below
our target value). Thus, we only discuss the mean Ta-Cl
distance in this case, as this appears to be refined reasonably
well and in a reproducible manner. Pt(PF3)4 is also indicated
to be fluxional, since the GED data have been found to be
consistent with free rotation about the Pt-P bond.64 Both
staggered and eclipsed conformations turned out to be
minima at the BP86(SDD) level, with marginal differences
in the optimized bond distances. We employed the slightly
more stable eclipsed form45 throughout this study.

The final selected experimental parameters are collected
in Table 1. Most distances are ra or rR values determined
from GED, and some are rz or r0 geometries known from
MW spectroscopy. In general, when both sets of parameters

are known, they tend to be in very good mutual accord, with
differences rarely exceeding 1 pm, our target precision.

Performance of the ECP Models. Individual distances
optimized with the various density-functional/ECP/basis-set
combinations are given as Supporting Information. The
resulting statistical assessment, that is, the mean and standard
deviations from the reference data in Table 1, is summarized
in Table 2 (Dj equil and Dj std

equil. values, respectively). Deviations
are defined as rcalc - rexp, such that positive mean deviations
denote overestimation of the bond lengths by DFT. In
addition, the mean absolute and the maximum errors to ei-
ther side are included in Table 2 (labeled |Dj |equil and Dmax

equil,
respectively). It turned out that, in particular, the standard
deviation is strongly influenced by a single outlier, namely
the Hf-Hbr bond in Hf(BH4)4 (bond no. 3), which is
significantly underestimated at all DFT levels.70 In order to
assess the effect of this bond on the overall statistics, we
also provide Dj std

equil values where this bond has been removed
from the data set (values in parentheses in Table 2).

First, all functionals were tested with the SDD ECP and
valence basis on the metal and 6-31G/ basis on the ligands
(entries 1-12 in Table 2, arranged in the order of increasing
mean deviation). Next, another ECP and/or other basis sets
were employed for selected functionals, notably BP86 (for

Table 1. Bond Lengths r (in pm) of Third-Row Transition-Metal Complexes in the Gas Phasea

compound (mult.)b sym. distance [bond no.] reference value ref ∆rvib

HfCl4 (1) Td r(Hf-Cl) [1] 231.6(5) 46 0.17
Hf(BH4)4 (1) T r(Hf-B) [2] 231.4(2) 47 2.67

r(Hf-Hbr) [3] 221.5(7) 47 3.27
TaCl5 (1) D3h r(Ta-Clmean) [4] 228.5(2) 48 0.21
TaMe3F2 (1) C3h r(Ta-C) [5] 212.5(5) 49 0.20

r(Ta-F) [6] 186.3(4) 49 0.20
WF6 (1) Oh r(W-F) [7] 182.9(2) 50 0.18
WOF4 (1) C4v r(WdO) [8] 166.6(7) 51 0.17

r(W-F) [9] 184.7(2) 51 0.22
WSCl4 (1) C4v r(WdS) [10] 208.6(6) 52 0.17

r(W-Cl) [11] 227.7(3) 52 0.27
WMe6 (1) C3 r(W-C)mean [12] 214.6(3) 53 0.88
W(CO)6 (1) Oh r(W-C) [13] 205.9(3) 54 0.40
W(Cp)2(H)2 (1) C2 r(W-H) [14] 170.3(2) 55 0.86
Re2F8 (1) D4 r(Re-Re) [15] 226.9(5) 56 0.27

r(Re-F) [16] 183.0(4) 56 0.20
ReOCl4 (2) C4v r(RedO) [17] 166.3(9) 57 0.10

r(Re-Cl) [18] 227.0(5) 57 0.28
ReO3Me (1) C3v r(RedO) [19] 170.9(3) 58 0.21

r(Re-C) [20] 206.0(9) 58 0.41
ReO2Me(C2H2) (1) Cs r(RedO) [21] 171.0(1) 59 0.15

r(Re-CMe) [22] 211.6(2) 59 0.60
r(Re-C1) [23] 204.3(2) 59 0.54
r(Re-C2) [24] 206.7(2) 59 0.72

OsO4 (1) Td r(OsdO) [25] 171.2(2) 60 0.27
OsOCl4 (1) C4v r(OsdO) [26] 166.3(9) 61 0.11

r(Os-Cl) [27] 225.8(5) 61 0.33
Os(CO)5 (1) D3h r(Os-C)mean [28] 196.2(4) 62 0.33
Os(C2H4)(CO)4 (1) C2v r(Os-Cet) [29] 220.9(5) 63 0.86

r(Os-Cax) [30] 195.4(2) 63 0.38
r(Os-Ceq) [31] 194.6(5) 63 0.31

IrF6 (4) Oh r(Ir-F) [32] 183.9(2) 50 0.31
Pt(PF3)4 (1) Td r(Pt-P) [33] 222.9(5) 64 0.53
Au(CO)Cl (1) C∞v r(Au-Cl) [34] 221.72(6) 65 0.36

r(Au-C) [35] 188.4(2) 65 0.48
Au(Me)(PMe3) (1) C3 r(Au-P) [36] 228.0(5) 66 0.32
Hg(Me)Cl (1) C3v r(Hg-Cl) [37] 228.5(3) 67 0.35

r(Hg-C) [38] 205.2(5) 67 0.49
Hg(CF3)2 (1) D3 r(Hg-C) [39] 210.6(5) 68 0.40
Hg(Me)(CN) (1) C3v r(Hg-CCN) [40] 203.69(2) 69 0.39

r(Hg-CMe) [41] 205.63(1) 69 0.43

a Unless otherwise noted, ra or rR values from GED are given. b (In parentheses: multiplicity) ax ) axial, br ) bridging, Cp )
cyclopentadienyl, eq ) equatorial, et ) ethylene.
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comparison with the results for the first and second transition
rows), B3P86, and PBE1.

Following the procedure of our previous studies, effective
geometries were then computed at the BP86/SDD level, via
numerical computation of the cubic force field using the
method of Barone et al. This affords incremental corrections
to the bond distances, ∆rvib (given in the last column of Table
1), leading from the equilibrium values re to the zero-point
averaged ones, rg

0. Arguably, the latter are better suited for
direct comparison to the experimental, thermally averaged
distances than the former. Actually, there is evidence for
small first-row molecules that the zero-point motion affords
the largest correction to equilibrium distances and that
thermal effects on top of them (i.e., the difference between
zero and finite T) tend to be much smaller.71 If this holds
also for the transition-metal complexes, the effective or rg

0

geometries should be a quite good approximation to the
experimental ra or r0 structures.

Assuming the same extent of transferability between
computational levels that has been established in our studies

of 3d- and 4d-metal complexes, we have added the ∆rvib

values evaluated at the BP86/SDD level to the corresponding
equilibrium distances obtained at all other levels and repeated
the statistical analysis with respect to the experimental
reference data. The corresponding mean and absolute devia-
tions are included in the last two columns in Table 2, labeled
Dj eff and Dj std

eff. The former, mean error is shifted with respect
to that of the equilibrium distances, Dj equil, by a constant
amount of ca. +0.5 pm. This is because all individual
increments (last column in Table 1) are positive, i.e. bonds
get longer upon zero-point averaging. The individual incre-
ments themselves are quite variable, however, ranging from
very small changes for metal-oxo multiple bonds (ca. 0.1
pm), via intermediate values for metal-carbon bonds (up
to ca. 0.9 pm), to quite large values for the bonds involving
the boranate ligand in Hf(BH4)4, where the corrections
amount to more than 3 pm for the Hf-H distance (see Table
1). Since this distance appears to be significantly underes-
timated in most equilibrium geometries (see the Supporting

Table 2. Statistical Assessment of Equilibrium (re) and Effective (reff) Metal-Ligand Bond Distances Computed for the Test
Set in Scheme 1 at a Number of Levels of Theorya

entry functional ECP/basis setb Dj equil |Dj equil| Dj std
equil c Dmax

equil Dj eff Dj std
eff

1 LSDA SDD -0.26 1.56 2.10 (1.46) -8.7 [3] 0.23 1.70
2 PBE1 SDD 1.07 1.67 2.07 (1.58) 5.8 [36] 1.56 1.76
3 B3P86 SDD 1.32 1.83 2.09 (1.53) -7.7 [3] 1.81 1.75
4 B3PW91 SDD 1.64 2.05 2.11 (1.60) -7.1 [3] 2.13 1.80
5 TPSSh SDD 2.24 2.66 2.25 (1.53) -8.2 [3] 2.72 1.88
6 PBE SDD 2.76 3.06 2.17 (1.69) 6.9 [36] 3.25 1.82
7 B3LYP SDD 2.92 3.22 2.43 (1.97) 9.6 [36] 3.41 2.18
8 TPSS SDD 2.94 3.33 2.33 (1.59) -7.8 [3] 3.43 1.94
9 BPW91 SDD 3.05 3.34 2.24 (1.74) 7.6 [36] 3.54 1.90
10 BP86 SDD 3.10 3.39 2.21 (1.69) 7.5 [36] 3.59 1.87
11 VSXC SDD 3.23 3.56 2.51 (1.95) 9.4 [36] 3.72 2.22
12 BLYP SDD 4.78 5.01 2.63 (2.19) 11.6 [36] 5.27 2.37
13 BP86 LANL2DZ 3.94 4.50 6.09 (5.87) 21.0 [39] 4.43 5.94
14 BP86 LANL2DZd 5.82 6.33 6.56 (6.39) 21.3 [37] 6.31 6.40
15 BP86 SDD/SVPe 2.78 3.06 2.17(1.71) 8.0 [36] 3.27 1.90
16 BP86 SDD/TZVPe 2.33 2.67 2.21 (1.68) -6.7 [3] 2.82 1.91
17 BP86 SDD/QZVPe 1.89 2.22 1.94 (1.37) -6.8 [3] 2.37 1.63
18 B3P86 SDD/SVPe 0.97 1.85 2.23 (1.79) -7.5 [3] 1.46 2.00
19 B3P86 SDD/TZVPe 0.49 1.56 2.15 (1.63) -8.4 [3] 0.97 1.88
20 PBE1/ SDD/SVPe 0.69 1.74 2.23 (1.85) -7.3 [3] 1.18 2.02
21 PBE1 SDD/TZVPe 0.18 1.48 2.12 (1.66) -8.2 [3] 0.67 1.87
22 PBE1 SDD/QZVPe -0.23 1.26 1.90(1.42) -8.3 [3] 0.26 1.66
23 LSDA SDD/QZVP -1.49 1.77 1.93 (1.45) -9.9 [3] -0.99 1.56
24 LSDA ZORA/TZVP -1.82 2.01 2.30 (1.66) -11.9 [3] -1.34 1.87
25 PBE1 ZORA/TZVP -0.50 1.53 2.21 (1.66) -9.7 [3] -0.02 1.90
26 B3P86 ZORA/TZVP 0.04 1.60 2.28(1.69) -9.6 [3] 0.53 1.96
27 B3PW91 ZORA/TZVP 0.07 1.63 2.27 (1.71) -9.4 [3] 0.56 1.97
28 TPSSh ZORA/TZVP 0.56 1.72 2.45 (1.67) -10.7 [3] 1.05 2.08
29 PBE ZORA/TZVP 1.26 2.08 2.32 (1.74) -8.5 [3] 1.75 1.97
30 B3LYP ZORA/TZVP 1.50 2.29 2.60 (2.09) -8.3 [3] 1.99 2.34
31 TPSS ZORA/TZVP 1.29 2.08 2.52 (1.70) -10.4 [3] 1.78 2.13
32 BPW91 ZORA/TZVP 1.52 2.22 2.38 (1.80) -8.4 [3] 2.01 2.04
33 BP86 ZORA/TZVP 1.50 2.20 2.39 (1.78) -8.6 [3] 1.99 2.04
34 BLYP ZORA/TZVP 3.45 3.79 2.79 (2.27) 9.1 [36] 3.93 2.52
35 PBE+VdW ZORA/TZVP 1.14 2.12 2.49 (1.82) -9.6 [3] 1.63 2.09
36 B3LYP+VdW ZORA/TZVP 1.34 2.31 2.78 (2.15) -9.9 [3] 1.83 2.47
37 TPSS+VdW ZORA/TZVP 1.12 2.10 2.74 (1.80) -11.9 [3] 1.61 2.31
38 BP86+VdW ZORA/TZVP 1.32 2.23 2.61 (1.87) -10.2 [3] 1.81 2.20
39 BLYP+VdW ZORA/TZVP 3.25 3.77 3.03 (2.38) 8.8 [36] 3.73 2.69

a All values are in picometers relative to experimentally reported values (rexp). Dj equil, |Dj equil|, Dj std
equil, and Dmax

equil denote mean, mean absolute,
standard, and maximum deviations, respectively, for the equilibrium geometries, Dj eff and Dj std

eff are the corresponding deviations for the
zero-point averaged, effective geometries. In square brackets: bond numbers from Table 1 for which the maximum error occurs. b 6-31G/
basis for the ligands, except where otherwise noted. c In parentheses: standard deviations for geometries excluding bond no. 3 (see text).
d D95 for the ligands. e The corresponding Ahlrichs basis sets are used on the ligands.
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Information and Dmax
equil values in Table 2),70 the vibrational

correction significantly reduces the error for this bond,
thereby leading to noticeable improvements in the standard
deviations (compare Dj std

equil and Dj std
eff values in Table 2).

The following conclusions can be drawn from our results
for the 5d-metal complexes:

1. In conjunction with SDD and 6-31G/ basis, LSDA
outperforms all other functionals. It has the smallest mean
deviation close to zero for both equilibrium and effective
geometries and one of the smallest standard deviations (entry
1 in Table 2). This observation is in marked contrast to the
first- and second-row transition-metal complexes, where the
tendency of LSDA to overbind translates into optimized (or
effective) distances that are much too short.

2. Hybrid functionals are consistently superior to GGAs
and meta-GGAs, except for B3LYP, which is surpassed by
PBE, and more or less matched by a number of other
standard GGAs such as BPW91 or BP86. The two most
promising hybrid functionals are PBE1 and B3P86.

3. BLYP and the meta-GGA VSXC produce some of the
largest mean and standard deviations and cannot be recom-
mended, consistent with our findings for the lighter metal
complexes.

4. The LANL2DZ ECPs together with their compact
valence bases are inferior to the corresponding SDD variants
with their more flexible basis sets. The large errors evident
from Table 2 for LANL2DZ (entry 13) are to a large extent
due to some spectacular failures for the linear Hg(II) species
in the set (see the Supporting Information and Dmax

equil values
in Table 2).72 For the other complexes, the relative perfor-
mance of LANL2DZ and SDD is less disparate, but the latter
is, in general, slightly superior (arguably due to the more
flexible valence basis on the metal).73

5. Larger basis sets are beneficial. In particular in the
Ahlrichs series, the systematic increase of the metal-valence
and ligand bases from SVP to TZVP and QZVP is con-
comitant with a decrease in mean and standard deviations
(e.g., with the PBE1 functional, entries 20-22 in Table 2).
For LSDA, such a basis-set extension worsens the agreement
with experiment somewhat (compare entries 1 and 23 in
Table 2), but also at the LSDA/SDD/QZVP level, a very

respectable mean error (below 1 pm for Dj eff) and one of the
lowest standard deviations remain.

The good performance of LSDA for the 5d complexes is
noteworthy. The tendency to underestimate metal-ligand
bond lengths at that level is most pronounced in the first
transition row,7 somewhat alleviated but still noticeable in
the second,8 and all but disappeared in the third. This trend
seen in the whole sets is also found in individual homologous
compounds that are present in all sets, namely the group-4
tetrachlorides and group-8 pentacarbonyls (see selected data
in Table S4 in the Supporting Information). For main-group
compounds, the ubiquitous overbinding of LSDA does not
appear to result in such a pronounced underestimation of
bond lengths as found for the 3d-metals (see ref 74 and some
illustrative data in Table S5 of the Supporting Information).

To conclude this section, LSDA and most hybrid func-
tionals are quite robust in reproducing geometries of third-
row transition-metal complexes and tend to be more accurate
than pure or meta-GGAs. Except for LSDA, PBE1 affords
the lowest mean deviation and one of the lowest standard
deviations, 1.6 and 1.8 pm, respectively, at the SDD level
(which are further improved with the larger TZVP and QZVP
basis sets). The best GGA is PBE, slightly superior to
B3LYP. The performance of these three functionals is shown
schematically in Figure 1a, a plot of normalized Gaussian
distributions using the corresponding data from Table 2
(analogous to the presentation by Helgaker et al.).5,6 Figure
1b illustrates the basis-set dependence for one particular
density functional, PBE1, where increase of the basis results
in noticeable shifts of the normal distribution and some
reduction of its width for the largest basis, qzvp. The
provisional ranking of the functionals for the 5d-metal
complexes, ordered according to increasing mean deviation
at the SDD level, is thus the following:

LSDA < PBE1 ≈ B3P86 ≈ B3PW91 < TPSSh < PBE
≈ B3LYP ≈ TPSS ≈ BPW91 ≈ BP86 < VSXC < BLYP

Performance of the All-Electron Models. The scalar
relativistic results generally show slightly smaller mean
deviations than their ECP counterparts (except for LSDA),
but the corresponding standard deviations always slightly
exceed those of the SDD ECP results. However, for all

Figure 1. Normal distributions for the errors in the effective bond distances for the test set in Scheme 1. The distributions have
been calculated from the mean and standard deviations in Table 2 and are all normalized to one. (a) Left: dependence on the
density functional using SDD ECP and valence basis (6-31G/ on the ligands). (b) Right: dependence on the basis set for the
PBE1 hybrid functional together with the SDD ECP.
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intents and purposes, the results are very similar since the
difference in the standard deviations is merely 0.17 pm on
average for all methods. The standard deviation is signifi-
cantly reduced when the Hf-Hbr bond distance (bond no.
3) is discarded as an outlier (see Table 2, values in
parentheses, and the discussion above). The errors for the
zero-point averaged effective geometries follow the same
trend as described above for the ECP case.

The ranking of the functionals is slightly changed in the
all-electron calculations since the LSDA functional now
shows one of the largest mean deviations thus indicating a
systematic underestimation of bond distances. However, its
standard deviation is still quite small. Consistent with the
ECP results, the hybrid functionals B3P86, B3PW91, PBE1,
and TPSSh provide the most accurate results, while the
performance of B3LYP and BLYP is considerably worse.
In fact, B3LYP and BLYP exhibit the largest standard
deviations in this set. The GGA and meta-GGA functionals
are found to give similar results, with PBE again being
superior to TPSS, BP86, and BPW91. The inclusion of the
empirical van der Waals (VdW) corrections does not lead
to noticeable improvements in the results in this test set
(compare for instance, entries 29 and 35 in Table 2). We

have, however, frequently found significantly improved
geometries in sterically crowded systems and stacked pi-
systems with this correction. Upon adding the zero-point
average, the standard deviations are further improved, again
in agreement with the ECP results.

Performance of the Models for All Transition Rows.
Combining the present results on the third-row metals with
those from our previous studies on first- and second-row
metals affords a comprehensive validation for the whole
d-block. A selection of levels that are available for all sets75

are assessed in Table 3. For the first and second transition
row, additional scalar relativistic ZORA calculations have
been performed according to the approach described above,
in order to allow for a fair comparison.

Unexpectedly, the standard deviations are somewhat
smaller in the all-electron calculations when the 3d-
complexes are calculated without relativistic corrections,
while the mean errors are superior only for PBE (with and
without van der Waals contributions) and PBE1. The effect
of the relativistic corrections is to decrease the metal-ligand
bond distances. According to our experience the nonrela-
tivistic all-electron calculated DFT distances are slightly
overestimated in many Werner type complexes.77 Hence the

Table 3. Statistical Assessment of Equilibrium (re) and Effective (reff)76 Metal-Ligand Bond Distances Computed for the
Combined Test Sets of All 3d-, 4d-, and 5d-Metal Complexes at Selected Levels of Theorya

entry functional 3d ECP/basis setb 4d,5d ECP/basis setb Dj equil |Dj equil| Dj std
equil Dmax

equilc Dj eff Dj std
eff

1 BP86 SDD SDD 1.40 2.41 2.63 7.5 [5d:36] 1.94 2.56
2 BP86 AE1 SDD 1.80 2.37 2.32 7.5[5d:36] 2.34 2.22
3 B3P86 AE1 SDD 0.04 1.60 2.10 -7.7 [5d:3] 0.57 2.02
4 BLYP AE1 SDD 3.71 3.84 2.61 11.6 [5d:36] 4.25 2.58
5 B3LYP AE1 SDD 1.85 2.41 2.35 9.6 [5d:36] 2.39 2.35
6 B3LYP SDD SDD 1.43 2.45 2.68 9.6 [5d:36] 1.97 2.69
7 BPW91 AE1 SDD 1.78 2.35 2.31 7.6 [5d:36] 2.32 2.20
8 B3PW91 AE1 SDD 0.39 1.67 2.12 -7.1 [5d:3] 0.93 2.05
9 TPSS AE1 SDD 1.59 2.16 2.27 -7.8 [5d:3] 2.12 2.11
10 TPSSh AE1 SDD 0.91 1.80 2.18 -8.2 [5d:3] 1.44 2.05
11 LSDA AE1 SDD -2.01 2.72 2.71 -8.7 [5d:3] -1.47 2.54
12 VSXC AE1 SDD 2.56 2.79 2.48 16.9 [4d:28] 3.10 2.48
13 PBE1 AE1 SDD -0.17 1.65 2.14 -7.4 [5d:3] 0.37 2.08
14 BP86 SVP SDD/SVPd 1.16 2.13 2.40 8.0 [5d:36] 1.70 2.36
15 BP86 TZVP SDD/TZVPd 1.39 2.04 2.19 -6.7 [5d:3] 1.92 2.12
16 BP86 QZVP SDD/QZVPd 0.93 1.72 1.99 -6.8 [5d:3] 1.47 1.93
17 BP86 TZVP ZORA/TZVP 1.24 2.05 2.29 -8.6 [5d:3] 1.78 2.18
18 TPSS TZVP ZORA/TZVP 1.04 1.83 2.19 -10.4 [5d:3] 1.58 2.02
19 TPSSh TZVP ZORA/TZVP 0.31 1.54 2.07 -10.7 [5d:3] 0.84 1.92
20 PBE TZVP ZORA/TZVP 0.99 1.93 2.25 -8.5 [5d:3] 1.53 2.13
21 PBE1 TZVP ZORA/TZVP -0.79 1.97 2.00 -9.7 [5d:3] -0.25 1.93
22 PBE+VdW TZVP ZORA/TZVP 0.87 1.63 2.40 -9.6 [5d:3] 1.41 2.24
23 LSDA ZORA/TZVP ZORA/TZVP -2.63 2.96 2.65 -11.9 [5d:3] -2.09 2.46
24 PBE1 ZORA/TZVP ZORA/TZVP -1.05 1.81 2.11 -9.7 [5d:3] -0.51 2.04
25 B3P86 ZORA/TZVP ZORA/TZVP -0.48 1.71 2.19 -9.6 [5d:3] 0.06 2.12
26 B3PW91 ZORA/TZVP ZORA/TZVP -0.46 1.71 2.18 -9.4 [5d:3] 0.08 2.11
27 TPSSh ZORA/TZVP ZORA/TZVP 0.04 1.69 2.23 -10.7 [5d:3] 0.58 2.09
28 PBE ZORA/TZVP ZORA/TZVP 0.73 2.00 2.43 -8.5 [5d:3] 1.26 2.32
29 B3LYP ZORA/TZVP ZORA/TZVP 1.17 2.15 2.50 -8.3 [5d:3] 1.70 2.50
30 TPSS ZORA/TZVP ZORA/TZVP 0.77 1.91 2.38 -10.4 [5d:3] 1.30 2.22
31 BPW91 ZORA/TZVP ZORA/TZVP 1.00 2.11 2.46 -8.4 [5d:3] 1.54 2.36
32 BP86 ZORA/TZVP ZORA/TZVP 0.98 2.11 2.47 -8.6 [5d:3] 1.52 2.38
33 BLYP ZORA/TZVP ZORA/TZVP 3.11 3.44 2.86 9.1[5d:36] 3.65 2.83
34 PBE+VdW ZORA/TZVP ZORA/TZVP 0.62 2.04 2.56 -9.6 [5d:3] 1.16 2.41
35 B3LYP+VdW ZORA/TZVP ZORA/TZVP 0.92 2.03 2.48 -9.9 [5d:3] 1.45 2.40
36 TPSS+VdW ZORA/TZVP ZORA/TZVP 0.54 1.94 2.53 -11.9 [5d:3] 1.08 2.31
37 BP86+VdW ZORA/TZVP ZORA/TZVP 0.83 2.12 2.61 -10.2 [5d:3] 1.36 2.47
38 BLYP+VdW ZORA/TZVP ZORA/TZVP 2.78 3.21 2.83 8.8 [4d:28] 3.32 2.73

a See footnotes in Table 2. b See footnotes in Table 2. c In brackets: transition row and corresponding running bond number from refs 7
and 8 and this work. d See footnotes in Table 2.
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scalar relativistic effects will often provide a correction in
the right direction. However, for the present set of 3d
transition-metal complexes this seems not to be the case.
By comparing the AE1(3d)/SDD(4d+5d) to TZVP(3d)/
ZORA+TZVP(4d+5d) results in Table 3 for the functionals
BP86, TPSS, TPSSh, and PBE1, the errors are slightly
reduced, with the mean deviation of PBE1 being the only
exception. For BP86, more combinations of methods and
basis sets have been evaluated than for the other functionals.
Using ECPs for 3d, 4d, and 5d molecules give the largest
errors, while a scalar relativistic treatment throughout all 3
rows gives the lowest error but still a rather large standard
deviation. The combination AE1(3d)/SDD+TZVP(4d+5d)
gives the best standard deviation, while the mean error is
slightly larger than the one for the combination TZVP(3d)/
ZORA+TZVP(4d+5d).

Because most functionals show subtle differences in
performance for the various transition rows (e.g., TPSS is
very good for 3d complexes, but lags behind for the heavier
congeners), the overall performance of the functionals tends
to even out over the whole d-block. BLYP and VSXC show
large mean and standard deviations throughout, and for
LSDA, the good performance in the ECP calculations for
the 5d row cannot make up for the deficiencies apparent
for the 3d and 4d series. Overall the latter three functionals
are trailing behind the others and cannot be recommended
for geometry optimizations of transition-metal complexes.
Most of the other functionals form a sort of peloton, for
which it is difficult to single out clear leaders. The slight
superiority of B3P86 and PBE1 noted in the 4d and 5d
complexes is preserved for the whole set, however. Thus,
these functionals emerge as being quite robust for the
computation of geometries of transition-metal complexes in
general.

However, while these functionals do show low mean
deviations from experiment (between ca. 0.4 pm and 0.6 pm,
Dj eff values in Table 3) and have the lowest associated
standard deviations of ca. 2 pm (see Dj std

equil or Dj std
eff values in

Table 3), the latter values imply a notable scatter of the
computed bond distances about the experimental values. For
comparison, the accuracy achievable with highly sophisti-
cated ab initio methods for equilibrium bond distances of
light main-group compounds is much better (cf. mean and
standard deviation around 0.2 and 0.3 pm, respectively, at
CCSD(T)/cc-pVQZ).5,6 In this context it should be kept in
mind that even reasonably precise GED results for transition-
metal complexes, which form a major source of the
experimental database used in our analyses, need not
necessarily be highly accurate. If any decomposition reactions
during vaporization of the samples go undetected, the
observed radial distributions and, thus, the structural param-
eters derived thereof may be affected noticeably. Thus, the
high accuracy achievable for light main-group compounds
appears to be out of reach, or at least undetectable, for
transition-metal complexes. Nevertheless, there appears to
be room for improvement in the development of new

exchange-correlation functionals for the description of transi-
tion-metal complexes.

Conclusions

This work concludes our extended validation study of DFT
methods for the prediction of transition-metal complex
geometries. Together with the data obtained for 3d and 4d
transition-metal species7,8 a rather comprehensive set of data
has been assembled that documents the strengths and
weaknesses of modern DFT methods for the prediction of
transition-metal geometries. It turns out that no single
functional is clearly superior to all others, and, hence, a
variety of choices remains possible. Overall, there is a slight
advantage of hybrid functionals, especially PBE1 (sometimes
also called PBE0), and B3P86 or B3PW91 appear to be the
most advantageous choices. Since PBE1 has also been found
to perform exceedingly well for many other properties
including energetics,78 excitation energies,79 or EPR proper-
ties,80 it may even be preferred over B3LYP for general
chemistry applications. Nevertheless, very significant com-
putational advantages can be realized if nonhybrid (GGA or
meta-GGA) functionals are combined with the density fitting
technique (a factor of 5-10 represents a typical speedup over
conventional implementations). In this respect, the excellent
behavior of the PBE functional should be mentioned as a
viable alternative. However, it is clearly necessary to proceed
to basis sets of at least triple-� quality if accurate results are
to be obtained. Small, unpolarized basis sets such as
LANL2DZ3 cannot be recommended if it is desired that the
results reflect the properties of the functional more than the
shortcomings of the basis set used. The extended study also
demonstrates that well designed ECPs, such as the Stuttgart/
Dresden ones,4 can safely be used for studying transition-
metal complex geometries. All-electron calculations are now
equally feasible since suitable segmented Gaussian basis sets
ofvariousdouble-throughquadruple-�qualityareavailable.19-22

Their performance in conjunction with the ZORA or DKH2
scalar relativistic treatments is very similar to that in the ECP
case without an undue increase in computation time. The
exception are hybrid DFT calculations on 5d species where
the significant number of f-primitives required to describe
the 4f-shell properly does add noticeably to the computational
effort. No such bottlenecks arise in nonhybrid calculations
within the density fitting approximation, in particular if the
efficient Split-RI-J variant is used that behaves particularly
well with respect to higher angular momentum basis func-
tions.81 The advantages of the all-electron treatment become
significant upon calculating molecular properties such as total
electron-densities,11 Mössbauer spectra,13 X-ray absorption
spectra,12 NMR,14 or EPR spectra.15,16
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ing: Jülich, Germany, 2000; NIC Series Vol. 3, pp 507-540;
www.fz-juelich.de/nic-series/Volume3/dolg.pdf and the ex-
tensive bibliography cited therein.

(2) E.g., Frenking, G.; Antes, I.; Böhme, M.; Dapprich, S.; Ehlers,
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Abstract: The barriers of internal rotation of the two phenyl groups in biphenyl are investigated
using a combination of coupled cluster and density functional theory. The experimental barriers
are for the first time accurately reproduced; our best estimates of the barriers are 8.0 and 8.3
kJ/mol around the planar and perpendicular conformations, respectively. The use of flexible
basis sets of at least augmented quadruple-� quality is shown to be a crucial prerequisite. Further,
to finally reconcile theory with experiment, extrapolations of both the basis set toward the basis
set limit and electron correlation toward the full configuration-interaction limit are necessary.
The minimum of the torsional angle is significantly increased by free energy corrections, which
are needed to reach an agreement with experiment. The density functional B3LYP approach is
found to perform well compared with the highest level ab initio results.

1. Introduction

From an electronic structure point of view, biphenyl (C12H10,
see Figure 1) is a surprisingly challenging molecule. Espe-
cially pinpointing the energetics of the internal rotation
around the central C-C bond connecting the two benzene
units has proven problematic. The traditional picture of the
interactions involved in deciding the torsional angle between
the two twisted phenyl planes is that of an energetic
competition between the favorable π-conjugation between
the two planes and the steric repulsion between the adjacent
hydrogens in ortho-position. Here we should mention that
this interpretation of the counterbalancing interactions was
recently challenged by Matta et al.,1 who proposed that the
hydrogen-hydrogen interaction would in fact be attractive
and that the reason for nonplanarity instead is caused by an
unfavorable lengthening of the central C-C bond when the
planes become more coplanar. This view was later rejected
in favor of the classical interpretation by Poater et al.2 The
debate is ongoing.3 Anyhow, opposing interactions are
involved, and therefore a theoretical approach that treats all

important effects on equal footing is necessary for a reliable
description of the potential energy surface.

In the most recent gas-phase experiments, Bastiansen and
Samdal estimated the barriers to be 6.0 ( 2.1 kJ/mol and
6.5 ( 2.0 kJ/mol around 0° and 90°, respectively,5 while
Almenningen et al. found the equilibrium angle to be 44.4
( 1.2°.6 The computational reproduction of the experimental
barriers of torsion has hitherto proved to be difficult for

* Corresponding author e-mail: mikael.johansson@iki.fi.
† Aarhus University.
‡ University of Helsinki.

Figure 1. The equilibrium structure of biphenyl, C12H10. The
figure was created with XMakemol.4
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theoretical methods. Ab initio quantum chemical methods
tend to give too high barriers, especially for the rotation
around the planar conformation.7-15 Recently, Sancho-Garcı́a
and Cornil16 performed a thorough and systematic study of
the energetics of the torsional potential of biphenyl. Using
high-level correlated wave function methods, their best
estimates of the barriers were still higher than those deduced
from experiment. The 0° barrier was 2.4 kJ/mol beyond the
experimental uncertainty. More importantly, the order of the
barrier heights differed from experiment, with ∆E (0°)>∆E
(90°). The elusiveness of the experimental values has led to
speculations about possible problems and ambiguities in the
experimental interpretation.

While experimental problems naturally cannot be ruled
out and were commented on already in the original work,5

we set our goal to obtain a theoretical treatment that is as
thorough as possible, by performing high-level electronic
structure calculations, including all major effects. Hence, we
explore the limits of all three dimensions of quantum
chemical accuracy: (i) the amount of correlation energy
accounted for, (ii) the completeness of the one-particle basis
set (which Sancho-Garcı́a and Cornil16 identified as probably
the largest source of error left in their study), and, last and
least, (iii) the completeness of the Hamiltonian, that is,
inclusion of relativity. As we will show, meticulous calcula-
tions allow us to finally reconcile theory with experiment,
for the right reasons, without relying on compensating errors.

2. Methodology Overview

The geometries of biphenyl in various conformations have
been obtained at the density functional theory (DFT)
level,17,18 within the generalized gradient approximation
(GGA),19 using the popular combination of Becke’s three-
parameter hybrid exchange functional20 in connection with
the Lee-Yang-Parr correlation21 functional, B3LYP; the
correlation of the uniform electron gas was modeled with
the Vosko-Wilk-Nusair VWN5 formulation.22 The doubly
polarized triple-� quality basis-set, TZVPP,23 was used
during optimization. Final B3LYP and Hartree-Fock (HF)24,25

energies were evaluated from extrapolated energies using
Jensen’s polarization consistent basis set series, pc-n.26-29

Scanning of the potential energy surface (PES) of the relative
torsional angle of the phenyl planes was done by optimizing
all coordinates except the torsional angle. Additional geom-
etry optimizations were performed using HF and second
order Møller-Plesset perturbation theory (MP2),30 within
the density-fitting resolution of the identity formulation
(RI-MP2).31,32

Correlated ab initio wave function (WF) energies were
calculated using the B3LYP structures at the following levels
of theory: MP2, the spin component scaled version of MP2
(SCS-MP2),33 and coupled cluster (CC) including single and
double excitations, CCSD,34 as well as perturbative triples
corrections, CCSD(T).35 In general, the 1s orbitals of the
carbon atoms were kept frozen, and Dunning’s standard basis
sets36,37 of up to the augmented quadruple-� level, i.e., 1420
basis functions, were employed. Fully correlated calculations
were performed with the weighted core-valence basis set of
Peterson and Dunning.38 Details on the use of basis sets are

given in the discussion. The basis set limit was estimated
by the two-point scheme of Halkier et al.39 (eq 3). The full
configuration-interaction limit was extrapolated from the CC
values with Goodson’s continued fraction method40 (eq 4).

The zero point energies (ZPE) as well as the enthalpies
∆H and free energies ∆G at experimental temperature were
estimated within the harmonic approximation, treating rota-
tion and translation classically. The vibrational frequencies
were calculated analytically41 at the B3LYP/TZVPP level.
Relativistic effects were computed at the B3LYP level with
the one-step exact two-component relativistic Hamiltonian
recently presented by Iliaš and Saue.42

Molecular symmetry was exploited to speed up the
calculations. The planar (0°) conformation was assigned D2h

symmetry, and the perpendicular (90°) conformation D2d

(abelian C2V where necessary). The intermediate torsion angle
conformer calculations were performed in D2 symmetry.

The correlated wave function calculations were performed
with the Molpro 2006.1 package;43-45 the Turbomole 5.91
program suite46-51 was used for nonrelativistic DFT and all
geometry optimizations; and relativistic calculations were
performed with the Dirac package.52 Default convergence
and threshold parameters were employed, with the following,
tighter exceptions: The Molpro aug-cc-pVQZ calculations
used one- and two-electron integral thresholds of 10-15; the
Turbomole calculations used the “m4” type grid53 and a self-
consistent field (SCF) convergence criterion of 10-7 Hartree.
Some basis sets were obtained via the convenient Basis Set
Exchange portal.54,55

3. Results and Discussion

In this section, we begin by examining the pure, nonrela-
tivistic electronic energies at 0 K of biphenyl. The relative
energies of three conformations are studied: the equilibrium
structure as well as the planar and perpendicular transition
states. After that, various correction terms to the energies
are discussed. These include relativistic effects, zero-point
vibrational energies and thermal corrections, and the effect
of correlating all electrons. Extrapolations to the basis set
limits and electron correlation limits are performed. After
this, we combine everything and report our best estimates
of the final barriers of rotation. Finally, we discuss the
equilibrium torsion angle.

3.1. Nonrelativistic Electronic Energies. We have cal-
culated the torsional barriers over the planar, 0°, and the
perpendicular, 90°, conformations, with various wave func-
tion methods. Several different basis sets have been used
for single-point energy evaluations on the structures opti-
mized at the B3LYP/TZVPP level. Full relaxation of the
coordinates was allowed, with the exception of the torsional
angle. In addition to the transition state structures, also
the angle of the equilibrium structure was constrained, to
the experimental value of 44.4°. A full optimization at the
B3LYP level gives an angle of 39.5° at 0 K. The potential
energy surface near the minimum is, however, very shallow,
and the 44.4° conformation lies only 0.26 kJ/mol higher in
energy. This is further discussed in Section 3.12, where
thermal corrections are seen to have a large effect on the
minimum angle.
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Table 1 shows the barriers obtained with basis sets of
increasing size. One can note that for all of the correlated
wave function methods considered, the barrier at 90° seems
to converge rather smoothly toward the aug-cc-pVQZ value,
both when increasing the cardinal number of the basis set
and when augmenting the basis with diffuse functions.

For the barrier around 0°, the situation is different. The
barrier gets constantly lower compared to the perpendicular
barrier, and, for CCSD(T), ∆E (0°) eventually falls below
∆E (90°), in agreement with the experimental results.
However, there is still a notable lowering of the barrier when
adding diffuse functions to the quadruple-� quality basis set,
that is, when going from cc-pVQZ to aug-cc-pVQZ. At the
CCSD(T) level, the difference is 0.3 kJ/mol. Therefore, the
basis set limit cannot safely be considered to be reached.

We also want to stress, as has been done several times
before, that correlated calculations at the cc-pVDZ level are
highly unreliable, almost to the point of being useless. Little
of the correlation energy inherent to a particular method is
captured, and, what is worse, the amount is very different
depending on conformation. As an example, the relative MP2
correlation energies at the cc-pVDZ level are -0.59 and
+2.28 kJ/mol for the 0° and 90° barriers, respectively. This
represents only 17% of the best estimate for the 0°
conformation but 65% for the 90° conformation. Reasons
for this, and the slower basis set convergence for the planar
conformer in general, are discussed in more detail in
connection with intramolecular basis set superposition error
in Section 3.8.

3.2. Extrapolation toward the Basis Set Limit:
Reference Energies. Using basis set extrapolation tech-
niques, it is possible to obtain more accurate energies without
performing prohibitively expensive calculations with larger
basis sets. We begin by considering the reference Hartree-
Fock energy.

A converged HF energy is naturally important, especially
when very high accuracy is desired. With uncertainties in
the reference energy, the incorporation of other, minute
correction terms loses meaning. Although the correlation
consistent series seems to be reasonably well converged also
for the HF energy in Table 1, it is well-known that HF and
DFT energies are not optimally represented by this series.56,57

For this, we have employed Jensen’s polarization-consistent
basis sets, pc-n26,27 and the augmented versions aug-pc-n.28

The n in the basis set name indicates the polarization beyond
the free atom. Thus, pc-1 for carbon is a double-� basis set
with s, p, and d functions.

For the self-consistent field (SCF) energy extrapolations,
both at the HF and B3LYP levels, we used two of the three-

point schemes suggested by Jensen,29 in connection with
fully decontracted pc basis sets. Below, Lmax is the highest
angular momentum of the (carbon) basis set, Ns is the number
of s-functions, and E∞

SCF, B, and C are variables that need
to be fitted using the energies of three consecutive pc-n basis
sets:

E∞
SCF ≈ ELmax,Ns

SCF -B(Lmax + 1)e-C√Ns (1)

The following, simpler formula, which does not take Ns

as a parameter was also used:

E∞
SCF ≈ ELmax

SCF -B(Lmax)
-C (2)

Table 2 shows the HF barriers computed with different
pc basis sets; extrapolated values are found in Table 3. For
comparison, we have also tested a few selected Karlsruhe
basis sets23,58,59 and in addition report B3LYP results.

The nice, smooth convergence of the barriers when
climbing the pc-n ladder is noteworthy. The SCF energies,
both for HF and B3LYP, are well converged at the pc-4 level.
Both extrapolation formulas for pc-[2,3,4] give essentially
the same barriers as the nonextrapolated value. The total
energies are between 0.12 and 0.17 kJ/mol lower, though.
The fitted C parameter for eq 1 is near 6 for all extrapolation
combinations. This was noted in ref 29 and exploited for
the construction of a two-point fitting scheme, the validity
of which our results corroborate. For eq 2, the C parameter
changes significantly when increasing Lmax. For both equa-
tions, the B parameter assumes very varied values.

Also for the SCF energies, the double-� basis sets pc-1,
aug-pc-1, and SVP58 give quite poor barriers. The Dunning
(aug)-cc-pVDZ basis sets actually perform significantly
better, see Table 1. The sometimes unsatisfactory perfor-

Table 1. Computed Barriers of the Torsion around 0° and 90°, Using Selected Dunning Basis Setsa

HF MP2 SCS-MP2 CCSD CCSD(T)

0° 90° 0° 90° 0° 90° 0° 90° 0° 90°

cc-pVDZ 12.82 5.40 12.23 7.68 12.24 6.73 11.34 6.56 10.89 7.23
aug-cc-pVDZ 12.05 4.57 9.86 7.45 10.15 6.45 9.77 6.08 9.23 6.67
cc-pVTZ 12.49 5.82 9.86 9.13 10.27 7.97 9.69 7.68 8.85 8.50
aug-cc-pVTZ 12.46 5.95 9.78 9.43 10.30 8.26 9.77 8.05 8.83 8.86
cc-pVQZ 12.56 5.88 9.65 9.33 10.14 8.13 9.64 7.90 8.68 8.74
aug-cc-pVQZ 12.53 5.81 9.35 9.31 9.89 8.12 9.41 7.92 8.39 8.76

a The barriers are given in kJ/mol.

Table 2. Barriers Computed at the HF and B3LYP Levels
Using Fully Decontracted Polarization Consistent Basis
Sets, As Well As Selected Karlsruhe Basis Setsa

HF B3LYP

0° 90° 0° 90°

pc-1 13.57 4.22 9.16 7.07
aug-pc-1 15.16 5.35 9.38 7.88
pc-2 12.70 5.62 8.04 8.32
aug-pc-2 12.52 5.71 7.75 8.40
pc-3 12.50 5.79 7.76 8.48
aug-pc-3 12.49 5.80 7.76 8.49
pc-4 12.47 5.81 7.76 8.50
SVP 11.71 6.04 5.92 9.57
TZVPP 12.55 5.75 7.73 8.40
QZVPP 12.53 5.79 7.83 8.47

a Energies are in kJ/mol.
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mance of pc-1 has been noted earlier.56 It is also interesting
to note that contrary to the correlated WF energies, augment-
ing the double-� basis set degrades the relative energies
between the 44.4° and 0° conformations quite significantly.
Possible reasons for this are discussed in Section 3.8.

From the data in Table 3, one cannot clearly recommend
one extrapolation scheme over the other. When extrapolating
the pc-n, n ) 2,3,4 series, the formulations give very similar
energies. Some differences using the smaller basis sets can
be noted, but neither method consistently outperforms the
other. Using eq 2, the total pc-[2,3,4] energies are ca. 0.05
kJ/mol lower. For this specific series, eq 2 was found to
perform slightly better also for the smaller systems in ref
29. Probably due to its simpler formulation, the numerical
solutions were also more stable, whereas solving the system
of equations arising from eq 1 on occasion required manual
fine-tuning of the initial guesses to converge. Also, although
unambiguous for biphenyl, deciding on the values of Ns in
eq 1 is not always trivial.29 For these reasons, we use the
values obtained by eq 2 as our reference energies.

3.3. Extrapolation toward the Basis Set Limit: Cor-
relation Energies. With a reliable reference energy estab-
lished, we now turn our attention to the correlation energy.
We have used the two-point extrapolation scheme of Halkier
et al.,39 which has proven to be robust and reliable. Below,
X and Y are the (consecutive) cardinal numbers of the two
basis sets used in the extrapolation, that is, 3 for a cc-pVTZ
basis, etc.:

E∞
corr ≈ EXY

corr )
EX

corrX3 -EY
corrY3

X3 - Y3
(3)

In Table 4, extrapolation combinations are given for the
various choices of basis sets. The nonextrapolated aug-cc-
pVQZ barriers from Table 1 are reproduced for convenience.
The extrapolation corroborates the findings in Section 3.1:
The relative energies between the 44.4° and 90° conforma-
tions are converged. Extrapolation using the aug-cc-pVTZ
and aug-cc-pVQZ bases, aug-cc-pV[T,Q]Z, gives almost the
same barriers as those of the nonextrapolated aug-cc-pVQZ
basis set. But as suspected, there is still a significant lowering
of the barrier at 0°, with augmentation by diffuse function
being critical. Part of the difference between the pure aug-
cc-pVQZ and the extrapolated values comes from the
nonconverged HF reference energy. The last row in Table 4
shows the barriers calculated using the extrapolated reference
HF energy together with the correlation energy of the aug-

cc-pVQZ basis. The difference compared to the extrapolated
correlated energies decreases but is still significant. The
magnitude of the lowering is indeed so large, ∼0.4 kJ/mol,
that one cannot rule out a further lowering by employing
even larger basis sets.

Slightly surprisingly, the extrapolated cc-pV[D,T]Z relative
energies are, for all methods, quite close to the aug-cc-
pV[T,Q]Z energies. Fortuitously, the energy differences
between cc-pVDZ and cc-pVTZ results apparently reproduce
the right convergence behavior. All extrapolated results get
the barrier order for CCSD(T) correct, with ∆E (0°)<∆E
(90°). This underlines the usefulness of extrapolation;
significantly better relative energies can be obtained com-
pared to the nonextrapolated raw energies.

3.4. Comparison of Correlated Methods. Comparing the
different hierarchies of correlated wave function methods to
the reference CCSD(T) data, a few points can be observed:

a. The MP2 method overestimates ∆E (0°), ∆E (90°) by
1.0 and 0.6 kJ/mol, respectively, but gives the correct
ordering of the barriers.

b. The SCS-MP2 method overestimates ∆E (0°) by 1.5
kJ/mol and underestimates ∆E (90°) by 0.7 kJ/mol, which
leads to an erroneous ordering of the barriers.

c. The CCSD method overestimates ∆E (0°) by 1.1 kJ/
mol and underestimates ∆E (90°) by 0.8 kJ/mol, which again
leads to an erroneous ordering of the barriers.

Triple excitations on top of the CCSD energies are
important. Table 5 shows the basis set dependence of the
triples contribution, (T). The 90° values again seem well
converged, while a slight increase in the absolute magnitude

Table 3. Extrapolated Values for the Barriers Computed at the HF and B3LYP Levels Using Fully Decontracted Polarization
Consistent Basis Setsa

HF B3LYP

0° 90° B̃ C̃ 0° 90° B̃ C̃

Using Eq 1
pc-[1,2,3] 12.48 5.80 1.45 × 105 5.42 7.73 8.49 1.61 × 105 5.45
aug-pc-[1,2,3] 12.50 5.74 9.19 × 105 5.74 7.77 8.49 1.07 × 106 5.79
pc-[2,3,4] 12.46 5.82 1.02 × 106 6.04 7.77 8.50 1.32 × 106 6.12

Using Eq 2
pc-[1,2,3] 12.43 5.83 1.52 × 100 5.85 7.66 8.52 1.60 × 100 5.90
aug-pc-[1,2,3] 12.52 5.83 1.45 × 100 5.86 7.79 8.52 1.54 × 100 5.92
pc-[2,3,4] 12.46 5.82 5.17 × 103 11.31 7.77 8.50 6.20 × 103 11.45

a The average values of the fitting parameters B and C are also reported for each extrapolation series. Energies are in kJ/mol.

Table 4. Barriers of the Torsion around 0° and 90°, Using
Extrapolated Values from Two Basis Setsa

MP2 SCS-MP2 CCSD CCSD(T)

0° 90° 0° 90° 0° 90° 0° 90°

cc-pV[D,T]Z 8.98 9.56 9.55 8.30 9.11 7.97 8.10 8.84
aug-cc-pV[D,T]Z 9.57 9.56 10.18 8.32 9.60 8.17 8.48 9.08
cc-pV[T,Q]Z 9.35 9.37 9.90 8.14 9.47 7.95 8.41 8.81
aug-cc-pV[T,Q]Z 8.93 9.34 9.47 8.13 9.03 7.94 7.96 8.79
aug-cc-pVQZ 9.35 9.31 9.89 8.12 9.41 7.92 8.39 8.76
aug-cc-pVQZ(erE) 9.29 9.32 9.82 8.13 9.34 7.93 8.33 8.77

a For example, the extrapolated value from the cc-pVTZ and
cc-pVQZ basis sets is denoted cc-pV[T,Q]Z. The extrapolated
pc-[2,3,4] values have been used as reference HF energies. For
comparison, the raw, nonextrapolated aug-cc-pVQZ values are
reported; (erE) denotes that the extrapolated reference energy has
been used. Energies are in kJ/mol.
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of the correction for the barrier at 0° is still present, when
comparing the aug-cc-pVQZ and the aug-cc-pV[T,Q]Z
results. The difference is however only 0.05 kJ/mol, much
lower than the corresponding difference for the total barrier.
This is in line with previous findings where the basis set
dependence of the perturbative triples has been shown to be
less severe than for CCSD single and double excitations.60,61

The triples correction contributes with different sign to
the two barriers; the 0° barrier is lowered by ∼1.1 kJ/mol,
while the 90° barrier is raised by ∼0.9 kJ/mol. This implies
that triple excitations are the more abundant, the more planar
the conformation is. A possible explanation for this is that
as the planarity of the molecule increases, the electron density
of ortho-hydrogens overlaps increasingly, giving more op-
portunities for triple excitations to occur.

The relatively good performance of MP2 is apparently
rooted in the quite large triple excitation corrections when
going from CCSD to CCSD(T). This is naturally something
that cannot be represented at the second-order perturbation
level, where only double excitations contribute to the energy.
Thus the good agreement comes from a cancelation of errors.
This also explains the failure of SCS-MP2, where the only
difference to standard MP2 is that the same-spin and
opposite-spin contributions to the correlation energy are
scaled differently. In essence, no information about the triples
contribution enters. SCS-MP2 was devised partly to damp
the usual overestimation of long-range same-spin correlation
in MP2.33 In the case of biphenyl, this overestimation of
MP2 fortuitously mimics the triples contribution. Thus,
without artificially overestimated dispersion, the SCS-MP2
energies become worse and closer to the CCSD results.

The magnitude of the triples correction entices caution
toward the adequacy of treating the triples in a perturbative
manner, a full triples consideration might provide additional
contributions to the relative energies. In addition to not going
beyond perturbative triple excitations, CCSD(T) does not
account for a possible multireference character present in
the molecule (except indirectly, via the reasonably high
percentage of correlation energy recovered). This is expected
to be a minor omission, however. Diagnostics devised to
quantify the reliability of a single-reference treatment support
this view. The T1 diagnostic by Lee and Taylor62 of the
CCSD solution was in all cases found to be below 0.011.
The D1 diagnostic by Janssen and Nielsen63 was always
below 0.030. Thus it appears quite safe to omit an explicit
treatment of multiple reference configurations. However, as

will be shown in Section 3.6, extrapolation toward the full
configuration-interaction limit still has an appreciable effect
on the barrier heights.

3.5. Core-Core and Core-Valence Correlation. To
explore the error introduced by keeping the 1s orbital of
carbon uncorrelated in the WF calculations, we performed
calculations with all electrons correlated. This was done using
the weighted core-valence basis sets of Peterson and Dun-
ning.38 Computational resources limited this study to the
double- and triple-� basis sets, cc-pwCVDZ and cc-
pwCVTZ, and subsequent extrapolation, although some cc-
pwCVQZ calculations were performed, as discussed at the
end of this section. The effect of correlating the core electrons
in a given basis set was obtained by comparing energies with
and without correlating the 1s electrons of the carbons. Table
6 shows that the relative corrections that core-correlation
introduce are small but nonvanishing. The extrapolation was
performed with eq 3 using only the core-correlation contri-
bution, not the full correlation energy. The extrapolated cc-
pwCV[D,T]Z values are arguably, with the assumption that
the core correlation energy follows the same convergence
pattern as the total correlation energy, the most accurate. For
all methods, core correlation is thus seen to raise both barriers
slightly, the effect on the 0° conformation being more
pronounced.

The double-� cc-pwCVDZ basis set is again much too
small to give reasonable results for any of the correlated WF
methods. Even if the correction is small, its magnitude and
even its sign change when using larger basis sets. Thus, for
estimating core-correlation effects the use of at least a triple-�
basis is mandatory, lest the “correction” turns to degradation.

The basis set problems are again more severe for the planar
conformation, while the convergence of the 90° barrier is
much smoother. Thus the uncertainties in the core-correlation
corrections for the 0° barrier are bigger than for the
perpendicular; the 0° corrections should probably be even
slightly more positive, i.e., raise the barrier slightly more.
To test this, we performed calculations with the quadruple-�
cc-pwCVQZ basis set. This basis set was too large for fully
correlated computations on the 44.4° conformer with avail-
able resources, so only the relative corrections between the
planar and perpendicular conformers could be obtained.
Comparing the barriers obtained at the cc-pwCV[D,T]Z and
cc-pwCV[T,Q]Z levels, it was found that the 0° barrier is
indeed slightly raised when using the more complete
extrapolation: For MP2 and SCS-MP2 by 0.02 kJ/mol and
for CCSD and CCSD(T) by 0.03 kJ/mol, compared to the
90° conformer. As the core-correlation contribution to the
90° barrier seems quite converged already at the cc-
pwCV[D,T]Z level, much of this would likely be transferable
also to the relative energies between the 0° and 44.4°
conformations.

Also for core-correlation, the two-point extrapolation
scheme, eq 3, at least in this case, captures more of the
correlation energy than the raw-values of a basis set one step
ahead in the series. The relative energies are of comparable
accuracy, that is, cc-pwCV[D,T]Z gives essentially the same
relative energies as cc-pwCVQZ. The relative core-correla-
tion at the CCSD(T) level is also almost the same as for

Table 5. Perturbative Triples Contributions with Different
Basis Sets and Extrapolation Combinationsa

0° 90°

cc-pVDZ -0.45 +0.67
aug-cc-pVDZ -0.54 +0.59
cc-pVTZ -0.85 +0.82
aug-cc-pVTZ -0.94 +0.81
cc-pVQZ -0.96 +0.84
aug-cc-pVQZ -1.02 +0.84
cc-pV[D,T]Z -1.00 +0.88
aug-cc-pV[D,T]Z -1.11 +0.91
cc-pV[T,Q]Z -1.05 +0.86
aug-cc-pV[T,Q]Z -1.07 +0.85

a Energies are in kJ/mol.
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CCSD, indicating that triple excitations from the core are
not significant for the relative energies. A more complete
dissertation of the cc-pwCVQZ results can be found in the
Supporting Information.

3.6. Extrapolation toward the Full Configuration-
Interaction Limit. With the best estimates for the electronic
energies at different levels of theory available, we next
proceed to extrapolation of the coupled cluster series toward
completeness. For this, we have employed the continued
fraction method of Goodson (CC-cf),40 devised to provide
near full configuration-interaction (FCI) energies. Below, δ1

) E [HF], δ2 ) E[CCSD] - E[HF], and δ3 ) E[CCSD(T)]
- E[CCSD]:

E[CC-cf])
δ1

1-
δ2 ⁄ δ1

1- δ3 ⁄ δ2

(4)

For HF, the pc-[2,3,4] energies were used; for CCSD and
CCSD(T), the aug-cc-pV[T,Q]Z energies with cc-pwCV[D,T]Z
core-correlation contributions added were used. We note that
all conformations were treated individually, after which the
relative energies were computed.

Table 7 shows the barriers as obtained with eq 4 and
represents our best estimates for the nonrelativistic electronic
energies at 0 K. Compared to the CCSD(T) results, the barrier
at 0° is lowered slightly more, while the 90° barrier is raised.

3.7. The Effect of Relativity. To check, and possibly rule
out the effect of relativity on the barrier heights, we have
performed relativistic all-electron calculations at the B3LYP
level, using the fully decontracted TZVPP basis set, treated
as Cartesian. Table 8 shows the barriers at the nonrelativistic
Lévy-Leblond level64 and using a one-step exact two-
component relativistic Hamiltonian (X2C).42

The barriers are seen to be virtually unaffected by
relativity. Even with the speed of light artificially halved to
0.5c, only a minute enhancement of the relativistic correc-
tions is observed. An even more rigorous treatment of
relativity, beyond X2C, might still have a small effect on
the relative energies, but, for practical purposes, relativity
can safely be considered not to contribute to the barrier
heights in biphenyl.

3.8. Intramolecular Basis Set Superposition Error. As
discussed above, the convergence toward the basis set limit
is much slower for the planar conformation compared to that
of the perpendicular. This has previously been attributed to
the more demanding basis set requirement for describing the
dispersion interaction in planar biphenyl.11 In this Section,
our working hypothesis will be that much of the difference
instead arises from intramolecular basis set superposition
error (BSSE).

Intramolecular BSSE is more difficult to assess than
intermolecular BSSE between two fragments,65-67 where the
counterpoise (cp) correction scheme68 has become a de facto
standard. Jensen used an approach analogous to cp in a study
of the BSSE for relative energies between different conform-
ers of the same molecule.66 When comparing the relative
energies between the conformers, the logical suggestion was
to explore the BSSE by the combined basis set of both
conformers, that is, by inserting dummy, ghost atomic centers
at the positions the other conformer would occupy, where
the conformations superimposed. In the spirit of Jensen’s
method, we will compare these values with the results
obtained in the normal basis sets, consisting of functions only
on the atoms.

For simplicity, we have only considered the relative
energies between the planar and perpendicular conformations.
With this combination, the basis sets are augmented by 8
ghost centers, corresponding to the four carbons and four
hydrogens that would stick out of the plane of one of the
phenyl rings, if the structures would be superimposed. Figure
2 shows the situation for the planar conformer. Although
the optimized geometries were used in the calculations, we
have assumed that the rest of the atoms are located at the
same relative positions in the two conformers, so as not to
add dummy centers that nearly coincide with the atoms. The
calculations were performed in C2V symmetry.

Table 9 shows the relative energies, with and without
corrections for BSSE. For the double-� basis sets, the
addition of the ghost centers leads to a significant lowering
of the 0° energy compared to the 90°. When going to the

Table 6. Relative Core-Correlation Corrections to the Torsion around 0° and 90°, Using the Weighted Core-Correlation
Basis Setsa

MP2 SCS-MP2 CCSD CCSD(T)

0° 90° 0° 90° 0° 90° 0° 90°

cc-pwCVDZ -0.00 0.02 -0.06 0.01 -0.03 0.03 -0.04 0.02
cc-pwCVTZ 0.09 0.03 0.08 0.02 0.05 0.04 0.04 0.03
cc-pwCV[D,T]Z 0.13 0.04 0.11 0.02 0.09 0.05 0.08 0.03

a cc-pwCV[D,T]Z again denotes extrapolated values. Energies are in kJ/mol.

Table 7. Barriers of the Torsion around 0° and 90°,
Calculated with the Continued-Fraction CC Method (CC-cf),
Using the Best Estimates of the Total Energies at the HF,
CCSD, and CCSD(T) Levelsa

0° 90°

CC-cf 7.88 8.94
CCSD(T) 8.04 8.83

a Also shown are CCSD(T) barriers including core-correlation.
Energies are in kJ/mol.

Table 8. Barriers of the Torsion around 0° and 90°,
Calculated at the B3LYP Density Functional Level, Using
the Decontracted TZVPP Basis Set, at Nonrelativistic
Lévy-Leblond (NR) and One-Step Exact Two-Component
Relativistic (X2c) Levelsa

0° 90°

NR 7.98 8.39
X2C 7.99 8.39
X2C(0.5c) 7.83 8.38

a (0.5c) denotes calculations done with the speed of light
halved. Energies are in kJ/mol.
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cc-pVTZ basis set, things look better, and the difference
between corrected and uncorrected energies becomes reason-
ably small.

An anomaly can be found in the extrapolated cc-pV[D,T]Z
values, where the cp corrected energy differences are much
further from the best estimates compared to the noncorrected
ones, even though the cp-corrected basis sets are more
complete. This also shows up as an artificially large BSSE
correction, ∆(cp), which even has the “wrong” sign. The
underlying reason is the fortuitously good performance of
the cc-pV[D,T]Z energies, as discussed in Section 3.3; the
extrapolated cc-pV[D,T]Z(cp) values are better than the raw
cc-pVTZ(cp) values, as they are expected to be.

It is difficult to divide the energy differences between the
normal and cp-augmented basis sets into components arising
from just a larger flexibility of the basis set and BSSE. The
fact that the difference decreases significantly when going
from double-� to larger basis sets does suggest that a major
part in fact is due to BSSE. A possible explanation for the
origin of BSSE, which favors the 90° conformation over the
0° conformation, could be the following. In the planar
conformation, basis functions are present only in the plane
of the molecule. For the perpendicular conformation, the

centers are naturally present in all three dimensions. Thus,
in the perpendicular case, the phenyl planes can to an extent
utilize basis functions from the other plane to describe the
space above (and below) their own plane. This suggestion
is supported by the fact that, for all methods save MP2, the
correction term is bigger for aug-cc-pVDZ than cc-pVDZ:
With augmented diffuse functions on the centers, they extend
more efficiently over to the top (and bottom) of the other
plane. This would explain the much slower convergence of
the energy in the planar conformer, where the space above
the planes has to be described only by basis functions in the
plane. For the same reason, the performance of the normal
augmented double-� basis sets compared to the nonaug-
mented is poorer, as seen also for the pc-1 basis set in Section
3.2.

Much of the poor performance of the smaller basis sets in
describing the relative energy of the planar and twisted
conformers thus comes not from an intrinsically poorer
description of the planar system but from a better possibility
of the twisted conformers to “borrow” basis functions from
the opposite plane. From Table 9, one can also note the usual
observation that the BSSE is more pronounced for the
correlated WF methods compared to HF.

3.9. Zero-Point Vibrational Energy and Thermal
Corrections. In this section we consider the zero-point
vibrational energy (ZPE) contributions to the barriers. The
experimental values were measured at approximately the
nozzle temperature of 401 K,6 while the reported values for
the potential barriers refer to absolute zero.5 Nevertheless,
it is of interest to explore the temperature dependence of
the energetics, so we have also explored finite temperature
effects on the barriers.

We consider the vibrational contributions to the thermal
energy corrections with two different approaches. The basis
for this is the observation that internal coordinate analysis
shows the lowest vibrational frequency consistently to
correspond almost purely to the internal rotation of the phenyl
planes. This frequency becomes imaginary sufficiently far
from equilibrium and naturally is imaginary also at the
transition states at 0° and 90° angles. When calculating the
ZPE, imaginary frequencies do not contribute to the sum
over vibrations, lowering the ZPE. In general, the imaginary
vibrations of transition states do not directly match a vibration
in the ground-state geometry, but, in the special case here,
there is a one-to-one correspondence. Therefore, it might be
motivated to remove the lowest vibration also from the ZPE
and vibrational contribution to the enthalpy (H) and free
energy (G). A similar approach was discussed previously
by Dos Santos et al.69 We leave this option to the reader,
but, subsequently in this work, we will consider the
traditional method of including all real vibrations. Another
approach would be to treat the internal rotation of the phenyl
planes as a hindered rotation, as the barrier heights of ca. 8
kJ/mol are comparable to kBT, 3.3 kJ/mol at experimental
temperature.

In Table 10, the ZPE as well as relative enthalpies and
free energies at the experimental temperature are shown,
using both approaches discussed above, obtained at the
B3LYP/TZVPP level. The ZPE has a notable effect on

Figure 2. The planar conformation of biphenyl, with the ghost
atom centers defined by the perpendicular conformation
shown in black and gray.

Table 9. Relative Energies between the 0° and 90°
Conformations, Calculated with Selected Basis Setsa

HF MP2 SCS-MP2 CCSD CCSD(T)

cc-pVDZ 7.42 4.55 5.51 4.78 3.66
cc-pVDZ(cp) 6.61 1.67 3.20 3.00 1.42
∆(cp) -0.81 -2.88 -2.31 -1.78 -2.24
aug-cc-pVDZ 7.48 2.40 3.70 3.63 3.32
aug-cc-pVDZ(cp) 6.05 -0.27 1.38 1.21 -0.45
∆(cp) -1.43 -2.67 -2.32 -2.42 -3.77
cc-pVTZ 6.66 0.73 2.30 2.00 0.35
cc-pVTZ(cp) 6.62 0.58 2.25 1.92 0.15
∆(cp) -0.04 -0.15 -0.05 -0.08 -0.20
cc-pV[D,T]Z - -0.58 1.25 1.14 -0.74
cc-pV[D,T]Z(cp) - 0.13 1.87 1.49 -0.37
∆(cp) - +0.71 +0.62 +0.35 +0.37
aug-cc-pVQZ 6.72 0.04 1.77 1.49 -0.37
aug-cc-pV[T,Q]Z - -0.41 1.34 1.09 -0.83

a (cp) denotes that the basis set has been augmented by
functions at the ghost centers of the other conformation. ∆(cp) is
the difference between the normal and the (cp) basis sets.
Energies are in kJ/mol; a positive value denotes that the 0° energy
is higher.
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the relative energies. As expected, the barriers are raised
if the lowest vibration is consistently omitted. This is
especially pronounced in the case of enthalpy and free
energy corrections. Without the frequency of the internal
rotation, there is a very small change between the relative
zero point energies and the enthalpies, indirectly confirm-
ing that other vibrational modes are largely independent
of the rotation.

It should be noted that we have chosen not to scale the
vibrational frequencies, a common procedure used to ap-
proximate the effects of anharmonicity. In this case, it is
not clear that scaling would provide an overall improvement
of the frequencies, so adding an extra empirical scaling factor
is not really motivated. Some inherent uncertainty in the
computed zero-point energies and the thermal corrections
based on the vibrations thus exists. Compared to the other
remaining sources of uncertainty, this is probably the most
significant.

3.10. The Effect of Geometry on the Relative Ener-
gies. All energetics discussed in previous sections are based
on single-point evaluations on geometries optimized at the
density functional B3LYP level. Although expected to be
highly realistic, it is difficult to estimate exactly how good
the geometries are, without performing full optimizations at
a sufficiently high ab initio level. This is however, for the
time being, beyond reasonable computational resources. For
this reason, it is of interest to examine how sensitive the
relative energies are with respect to the exact geometries of
the 0°, 44.4°, and 90° conformations.

To explore this, we have reoptimized the geometries at
Hartree-Fock and the RI-MP2 level, with subsequent single
point energy calculations. The geometry optimizations used
the same basis set as for the B3LYP geometries, i.e., TZVPP.
Table 11 shows the relative cc-pVTZ energies at different
levels of theory, based on geometries optimized at the
B3LYP, MP2, and HF levels.

Some differences in the barriers can be noted, although
none are very large. Even the barriers based on HF
geometries deviate less than 0.2 kJ/mol in the case of
correlated WF methods. The differences are largest for the
HF and MP2 energies, where for the specific method more
optimal geometries apparently play an especially prominent
role. Reassuringly, the coupled cluster barriers are very
similar for the electron correlation including B3LYP and

MP2 geometries. We note that the total CCSD(T)/cc-pVTZ
energies are ca. 0.5 kJ/mol lower when using the MP2
geometries instead of the B3LYP geometries, suggesting the
MP2 geometries to be slightly superior. Again, the planar
conformation exhibits the largest sensitivity, also with respect
to geometries. However, all-in-all, even more accurate
geometries are expected to have a very minor effect on the
relative barriers.

3.11. Best Estimates of the Torsional Barriers. With
values for all contributions to the barriers at zero temperature
available, we are now able to sum them up. Table 12
summarizes the work. The best estimate values of the barriers
are ∆E(0°) ) 8.0 kJ/mol, and ∆E(90°) ) 8.3 kJ/mol. Thus,
we have succeeded in bringing the barriers to within the
reported experimental uncertainty, reconciling theory with
experiment. Although some uncertainties remain in the
calculated values, the most important being (i) the zero-point
energy and (ii) the remaining basis-set effect for ∆E(0°),
we are fairly confident that the experimental values of 6.0
( 2.1 and 6.5 ( 2.0 kJ/mol for the potential energy at 0°
and 90°, respectively, are at the low end.

3.12. The Experimental vs Computed Torsional Angle.
Finally, we turn to the equilibrium torsional angle. To
pinpoint the exact minimum, the potential energy was
calculated at 1° intervals between 33° and 51°. The correlated
WF energies were obtained with the aug-cc-pVDZ and aug-
cc-pVTZ basis sets, with subsequent extrapolation (aug-cc-
pV[D,T]Z) as discussed in previous sections. The Hartree-
Fock reference energies and B3LYP energies were obtained
with the doubly polarized quadruple-� QZVPP59 basis set.
On top of the 0 K energies, thermal corrections were added,
based on frequency calculations at the B3LYP/TZVPP level.
The obtained energies were then fitted to a harmonic function
of the usual form E(φ) ) a × (φ-φ0)2 + c, with a, φ0, and
c free parameters, and φ0 the resulting minimum torsion
angle. To ensure that the region of the fit was as harmonic
as possible, the final fit was performed using only points
within 6° of the minimum angle, that is, using the 12 closest
data points. Limiting the number of data points changed the
angle very little, on average less than 0.1°, but resulted in
slightly better fits.

Table 13 shows the calculated equilibrium angles at
different levels of theory. The energy difference between the
minimum angle and the 44.4° conformations, based on the
fitted harmonic functions, are also shown. In Figure 3, the
resulting curves for the electronic energy at the CC-cf,
CCSD(T), and B3LYP levels are drawn. All correlated
methods are in close agreement, giving a minimum angle of
38.8-41.0°, while the Hartree-Fock angle is much larger.
The values and the curves are slightly shifted relative to each
other, consistent with the relative energies of the 0° and 90°
barriers at each level of theory. As for the energies, one can
note that MP2 agrees quite well with the CC-cf and CCSD(T)
results, both concerning the angle and the difference to the
44.4° conformation; SCS-MP2 again degrades both numbers.
Also B3LYP fares well in the competition.

The experimentally measured6 torsion angle of 44.4 ( 1.2°
is significantly larger than the theoretical values at zero
temperature; finite temperature effects can be expected to

Table 10. Lowest Frequencies (ν1), Zero-Point Energies
(ZPE), Relative Enthalpies (∆H), and Free Energies (∆G)
for Biphenyl with Different Torsional Anglesa

all real freqs 3N-7 highest freqs

0° 44.4° 90° 0° 44.4° 90°

ν1 80.5 i 61.0 55.3 i
ZPE 475.80 475.68 475.02 475.80 475.32 475.02
∆ZPE +0.12 0 -0.66 +0.49 0 -0.30
∆H (401 K) 518.14 521.04 517.58 518.14 517.69 517.58
∆∆H -2.90 0 -3.46 +0.45 0 -0.12
∆G (401 K) 352.28 345.92 349.98 352.28 350.98 349.98
∆∆G +6.36 0 +4.06 +1.30 0 -1.00

a Values calculated using all real frequencies are shown
together with values calculated using all except the lowest
frequency. Calculated at the B3LYP/TZVPP level. Frequencies are
in cm-1; energies are in kJ/mol.
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be important. Figure 4 shows the potential energy curve
calculated at the CC-cf level, with thermal corrections at the
B3LYP level added. From Table 13 one sees that zero-point
energy and enthalpy corrections increase the angle but only
by ca. 1°. Accounting for entropy effects via the free energy
∆G, on the other hand, increases the angle significantly, by
7.0° to 45.8°.

Even with free energy accounted for, the computed
equilibrium angle lies outside the experimental error bars,
being slightly larger than the measured angle. The ap-
proximations used in the computations should be kept in
mind. As discussed in relation with the relative energies
between the 0° and 90° conformations, using larger basis
sets would shift the curves slightly toward a lower angle,
most likely nudging the equilibrium angle to within experi-
mental error. Although this would bring the calculated angle
in agreement with experiment, a probably larger source of
error is the free energy correction itself. This has been

approximated via the vibrational frequencies that themselves
contain uncertainties as discussed in Section 3.9. The effect
of these approximations on the angle is difficult to predict,
and a shift in either direction is possible. Further, all the
energy curves are very shallow around the minimum,
especially so the free energy surface. Small changes in the
energies would have a notable effect on the angle. We are
however fairly confident that the zero temperature angle is
much smaller than the experimentally measured one. To

Table 11. Torsional Barriers Based on Geometries Obtained at the B3LYP, MP2, and HF Levels of Theory, Using the
cc-pVTZ Basis Seta

HF MP2 SCS-MP2 CCSD CCSD(T)

optimization level 0° 90° 0° 90° 0° 90° 0° 90° 0° 90°

B3LYP 12.49 5.82 9.86 9.13 10.27 7.97 9.69 7.68 8.85 8.50
MP2 12.27 5.78 9.99 9.11 10.32 7.94 9.65 7.69 8.86 8.52
HF 12.23 5.95 10.00 9.00 10.37 7.90 9.78 7.69 9.04 8.45

a Energies are in kJ/mol.

Table 12. Torsional Barriers at 0 K, Including All
Corrections Considered: Nonrelativistic Electronic Energy
(E(0 K), Including Core-Correlation), Relativistic Correction
(RC), and Zero-Point Energy (ZPE)a

CC-cf CCSD(T) B3LYP

0° 90° 0° 90° 0° 90°

E(0 K) 7.878 8.942 8.037 8.825 7.765 8.498
RC +0.013 -0.002 +0.013 -0.002 +0.013 -0.002
ZPE +0.120 -0.664 +0.120 -0.664 +0.120 -0.664
total 8.01 8.28 8.17 8.16 7.90 7.83

a The best-estimate continued-fraction barriers (CC-cf) are
compared to those of CCSD(T) and B3LYP. Energies are in kJ/
mol.

Table 13. Equilibrium Angle of Biphenyl Calculated at
Different Levels: Electronic Energy at 0 K, and with
Corrections for Zero-Point Energy (ZPE), Enthalpy (∆H),
and Free Energy (∆G) at 401 K (CC-cf/B3LYP Level
Only)a

∠ min ∆E(44.4°)

Electronic Energy at 0 K
HF 45.5° 0.01
MP2 39.6° 0.27
SCS-MP2 41.0° 0.13
CCSD 40.6° 0.15
CCSD(T) 39.0° 0.32
CC-cf 38.8° 0.36
B3LYP 39.4° 0.26

CC-cf with Correction Terms
ZPE 40.0° 0.20
∆H 39.6° 0.27
∆G 45.8° 0.01

a The energy differences to the 44.4° angle conformation are
also given, in kJ/mol.

Figure 3. Potential energy curves near equilibrium, based
on electronic energies at 0 K, calculated at the CC-cf (boxes),
CCSD(T) (circles), and B3LYP (triangles) levels. The curves
represent the harmonic potential fitted to the individual data
points.

Figure 4. Potential energy curves near equilibrium, calculated
at the CC-cf/B3LYP level. The electronic energies have been
corrected for zero-point energy (boxes), enthalpy (circles), and
free energy (triangles) at 401 K. The curves represent the
harmonic potential fitted to the individual data points.
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reproduce the measured angle, entropy and free energy are
thus seen to be compulsory ingredients of the computational
recipe.

4. Conclusions and Outlook

We have reported accurate calculations of the barriers of
rotation around the central bond in biphenyl. In contrast to
previous studies, we have shown that the experimentally
inferred barriers can be reproduced, if sufficiently sophisti-
cated methodology is employed. Our calculated best esti-
mates for the barriers are ∆E(0°) ) 8.0 and ∆E(90°) ) 8.3
kJ/mol, while the values estimated from experimental data5

were ∆E(0°) ) 6.0 ( 2.1 and ∆E(90°) ) 6.5 ( 2.0 kJ/mol.
Although the calculated barriers fit within the reported
experimental uncertainty, with the same order, the expected
accuracy of our results strongly suggests that the true values
are close to the upper limit of the error bars reported.

The basis set dependence of the barriers, especially around
0°, is high. Even augmented quadruple-� basis sets are
insufficient; the use of extrapolation techniques are compul-
sory. This is the case also for the electron correlation
treatment, where an extrapolation toward the full configu-
ration-interaction limit is necessary, as the coupled cluster
CCSD(T)approachstillhasabiastowardtwistedconformations.

The equilibrium angle of biphenyl was investigated, and
free energy corrections were found to be necessary to widen
the computed angle toward the experimentally measured
value6 of 44.4 ( 1.2°. Due to the shallowness of the potential
near minimum, the calculated value of 45.8° is, however,
very sensitive to small errors and uncertainties in the
computed energies.

Our results can readily serve as a basis for future
benchmark calculations for various theoretical treatments.
The reported standard, canonical CCSD(T) results, obtained
with basis sets up to the augmented quadruple-� level (aug-
cc-pVQZ), are among the largest performed to date. The
nature of biphenyl, having a highly delocalized electronic
structure, should prove an interesting test case for, e.g., local
ab initio correlation methods and other approximate methods
aiming toward a lower computational scaling. To this end,
we provide the structures and total energies as Supporting
Information.

For the computationally less demanding density functional
approach, the intricate competition between different chemi-
cal interactions makes for a delicious challenge, especially
for nonempirical functionals that have to rely on a good
description of the chemistry and physics involved, without
the help of fitted parameters. Indirectly, the B3LYP func-
tional was already benchmarked here and found to agree well
with the highest-level extrapolated ab initio results and
experiment. Its good performance could be considered
somewhat fortuitous, however, due to the empirical nature
of the functional.
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(25) Fock, V. Näherungsmethode zur Lösung des quantenmecha-
nischen Mehrkörperproblems. Z. Phys. 1930, 61, 126–148.

(26) Jensen, F. Polarization consistent basis sets: Principles.
J. Chem. Phys. 2001, 115, 9113–9125.

(27) Jensen, F. Polarization consistent basis sets. II. Estimating the
Kohn-Sham basis set limit. J. Chem. Phys. 2002, 116, 7372–
7379.

(28) Jensen, F. Polarization consistent basis sets. III. The impor-
tance of diffuse functions. J. Chem. Phys. 2002, 117, 9234–
9240.

(29) Jensen, F. Estimating the Hartree-Fock limit from finite basis
set calculations. Theor. Chem. Acc. 2005, 113, 267–273.

(30) Møller, C.; Plesset, M. S. Note on an Approximation Treatment
for Many-Electron Systems. Phys. ReV. 1934, 46, 618–622.
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(32) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2:
optimized auxiliary basis sets and demonstration of efficiency.
Chem. Phys. Lett. 1998, 294, 143–152.

(33) Grimme, S. Improved second-order Møller-Plesset perturbation
theory by separate scaling of parallel- and antiparallel-spin
pair correlation energies. J. Chem. Phys. 2003, 118, 9095–
9102.

(34) Purvis, G. D., III; Bartlett, R. J. A full coupled-cluster singles
and doubles model: The inclusion of disconnected triples.
J. Chem. Phys. 1982, 76, 1910–1918.

(35) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon,
M. A fifth-order perturbation comparison of electron correla-
tion theories. Chem. Phys. Lett. 1989, 157, 479–483.

(36) Dunning, T. H., Jr. Gaussian basis sets for use in correlated
molecular calculations. I. The atoms boron through neon and
hydrogen. J. Chem. Phys. 1989, 90, 1007–1023.

(37) Kendall, R. A.; Dunning, T. H., Jr; Harrison, R. J. Electron
affinities of the first-row atoms revisited. Systematic basis sets
and wave functions. J. Chem. Phys. 1992, 96, 6796–6806.

(38) Peterson, K. A.; Dunning, T. H., Jr. Accurate correlation
consistent basis sets for molecular core-valence correlation
effects: The second row atoms Al-Ar, and the first row atoms
B-Ne revisited. J. Chem. Phys. 2002, 117, 10548–10560.

(39) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch,
H.; Olsen, J.; Wilson, A. K. Basis-set convergence in
correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett.
1998, 286, 243–252.

(40) Goodson, D. Z. Extrapolating the coupled-cluster sequence
toward the full configuration-interaction limit. J. Chem. Phys.
2002, 116, 6948–6956.

(41) Deglmann, P.; Furche, F.; Ahlrichs, R. An efficient imple-
mentation of second analytical derivatives for density func-
tional methods. Chem. Phys. Lett. 2002, 362, 511–518.
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(58) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully optimized contracted
Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 1992,
97, 2571–2577.

(59) Weigend, F.; Furche, F.; Ahlrichs, R. Gaussian basis sets of
quadruple zeta valence quality for atoms H-Kr. J. Chem.
Phys. 2003, 119, 12753–12762.

(60) Klopper, W.; Noga, J.; Koch, H.; Helgaker, T. Multiple basis
sets in calculations of triples corrections in coupled-cluster
theory. Theor. Chem. Acc. 1997, 97, 164–176.

(61) Karton, A.; Taylor, P. R.; Martin, J. M. L. Basis set
convergence of post-CCSD contributions to molecular atomi-
zation energies. J. Chem. Phys. 2007, 127, 064104.

(62) Lee, T. J.; Taylor, P. R. A diagnostic for determining the
quality of single-reference electron correlation methods. Int.
J. Quantum. Chem., Quantum. Chem. Symp. 1989, 23, 199–
207.

(63) Janssen, C. L.; Nielsen, I. M. B. New diagnostics for coupled-
cluster and Møller-Plesset perturbation theory. Chem. Phys.
Lett. 1998, 290, 423–430.
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Abstract: The oxidation of polyunsaturated hydrocarbons by ·OH radical can play an important
role in lipid oxidation of polyunsaturated fatty acids (PUFA) such as arachidonic acid (AA). As
a prototype of this oxidation, the reaction of 1,4-pentadiene with the ·OH radical is studied
using the QCISD(T)/cc-pVTZ//BH&HLYP/6-31G(d) level of theory. One of the prereaction
complexes is shown to be a springboard for the indirect bisallylic hydrogen abstraction (AO),
terminal (T0O), and nonterminal ·OH addition (NT0O) reactions. The enthalpies of the transition
states of the AO, T0O, and NT0O reactions are found to be lower than those of the reactants, so
all these reactions are expected to be fast. The nonterminal adduct is found to be reactive via
two low-lying consecutive reaction channels. The first channel is a five-membered ring closing
(NT1O). The second channel is bond scission, which results in an allyl radical and a vinyl alcohol
(NT2O). An analogous reaction pathway in which AA takes the place of 1,4-pentadiene was
explored using the ONIOM(QCISD(T)/cc-pVTZ:BH&HLYP/6-31G(d))//BH&HLYP/6-31G(d)
method. The results show that the formation of the five-membered ring (AA-NT1O) is energetically
favored. Our results demonstrate for the first time a possible, ab initio-based mechanism for
the nonenzymatic biosynthesis of isoprostane-like structures from AA without the presence of
molecular oxygen. Furthermore, the energetically low-lying bond scission channel may explain
the observed formation of short fatty acids and dieneols (tautomers of unsaturated aldehydes).

1. Introduction

Fatty acids (FAs) are essential components of membrane
phospholipids. The hydrocarbon chain of the FAs can be
saturated as well as either monounsaturated (MUFA) or
polyunsaturated (PUFA). An important subclass of PUFAs,
called ω-6 fatty acids, can be characterized by a double
bond network which starts from the sixth carbon-carbon
bond counting from the methyl carbon at the tail end (ω
end) of the fatty acid.

PUFAs are integral structural components of membrane
phospholipids, where they play an important role in main-
taining the structural and functional characteristics of bilayer
cell membranes within their homeostatic boundaries. Besides
their physical effects on the membrane, PUFAs also con-
tribute to regulatory function through eicosanoid production.1

Eicosanoids are physiologically active compounds derived
biosynthetically from 20-carbon fatty acids following their
release from the membrane, through the specific action of
phospholipase A2, and include prostaglandins, thromboxanes,
and leukotrienes.2

Arachidonic acid (AA, 20:4n-6) is an ω-6 fatty acid
which is highly concentrated in brain tissue as an essential
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component of membrane phospholipids.3 Arachidonic acid
is the most important prostaglandin precursor in humans,4

and it is a component of the inositol phospholipids. AA plays
a role in eicosanoid synthesis, such as the biosynthesis of
15-F2-isoprostane. The conventional view of isoprostane
synthesis proceeds Via a pathway,5 which begins with the
formation of a radical by abstraction of the bisallylic
hydrogen (Habs) on C13 of AA (Scheme 1). Then, after
several reaction steps, a five-membered ring is formed from
C8-C12 carbons by means of molecular oxygen, producing
isoprostanes.

There are several shortcomings to this view. The formation
of isoprostanes has been detected in the nonenzymatic
oxidation of the membrane in ViVo and in Vitro.6,7 Further-
more, the conventional view cannot account for observation
of unsaturated aldehydes in the oxidation of the membrane
compounds.8 However, mechanistic steps for the nonenzy-
matic pathway have not been established theoretically.

Our aim in this work is to gain a better understanding of
the nonenzymatic pathway. From a reactivity point of view,
1,4-pentadiene (Scheme 1) is a good candidate for elucidating
possible oxidation pathways of PUFAs. The reaction 1,4-
pentadiene + ·OH has other advantages, such as the
moderate computational effort needed to perform the cal-
culation and the absence of steric effects.

This paper is organized as follows. Section 2 describes
the quantum chemical methods used for geometry optimiza-
tions and high-level energy calculation. Section 3 describes
the prereaction complexes and the associated low-lying
channels for the 1,4-pentadiene + ·OH reaction, including
transition states and products. Having established possible
pathways for 1,4-pentadiene, similar calculations are carried
out for arachidonic acid (AA) in place of 1,4-pentadiene.

2. Methods

All calculations were performed by using the Gaussian03
program package.9 In the case of reactions between alkenes
and the hydroxyl radical, it has been shown previously10 that
the BH&HLYP functional gives reasonable geometries when
used in combination with the 6-31G(d) split-valence basis
set.11 In every geometry optimization, ‘Tight’ convergence
criteria were used. The nature of stationary points was
checked by means of frequency calculations. Analytical

second derivatives of the energy with respect to Cartesian
coordinates were used for the determination of vibrational
frequencies. Furthermore, additional and accurate single point
calculations were carried out on the BH&HLYP/6-31G(d)
geometries using the QCISD(T) method12,13 along with the
cc-pVTZ Dunning basis set.14 Intrinsic reaction coordinate
(IRC) calculation started from the AO transition state was
also computed using the BH&HLYP/6-31G(d) level of
theory.

The structures in reactions of AA + ·OH were also
optimized at the BH&HLYP/6-31G(d) level of theory.
Accurate single point energies were computed using the two-
layer ONIOM technique,15 employing the QCISD(T)/cc-
pVTZ and the BH&HLYP/6-31G(d) level of theories for
the high-level and low-level layers, respectively. The high-
level layer contains C8-C12 and connected hydrogens, as
illustrated in Scheme 1. These calculations are referred to
as ONIOM(QCISD(T)/cc-pVTZ:BH&HLYP/6-31G(d))//
BH&HLYP/6-31G(d).

Activation enthalpies (∆‡H°) are calculated as the differ-
ence of QCISD(T)/cc-pVTZ energies between the transition
state (TS) structure and the van der Waals complex (COM),
adding the difference of their corresponding enthalpies
calculated at the BH&HLYP/6-31G(d) level of theory, and
without any scale correction (Scheme 2). The electronic
partition function of a species is assumed to be equal to its
multiplicity. In the case of the consecutive steps (NT1O and
NT2O as well as AA-NT1O and AA-NT2O), the nonterminal
adduct is regarded as the reactant, rather than the prereaction
complex (COM). The relative enthalpies of the transition
state (∆H°rel(TS)) are related to the enthalpy level of the
reactants (1,4-pentadiene and hydroxyl radical). The same
nomenclature is used in the case of the AA + ·OH reaction;
the only difference is the ONIOM(QCISD(T)/cc-pVTZ:
BH&HLYP/6-31G(d)) energy term instead of QCISD(T)/
cc-pVTZ.

In the case of AA + ·OH reactions, the effects of the
surrounding lipid are also estimated though BH&HLYP/
6-31G(d) single-point calculation using the CPCM model.16

The solute cavity is built up by means of radii from the UFF
force field (RADII ) UFF). A value of 4.0 was employed
for the dielectric constant (ε), to simulate the hydrophobic
interior of a lipid membrane. All the remaining parameters

Scheme 1. Structure of Arachidonic Acid and 1,4-Pentadienea

a The box with dotted lines shows the definition of the high-level layer in the ONIOM calculation.
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for the surrounding lipid are the same as those for water.
The contribution of the solvation to activation and reaction
Gibbs free energies, ∆∆G°solv(X), are formulated as

∆∆G°solv(X))∆G°solv(X)-∆G°solv(AA+ ·OH)

3. Results and Discussion

Reactions of 1,4-Pentadiene and Hydroxyl Radical. It
is well-known that in alkene + ·OH reactions,10,17,18 the
first step is the formation of a prereaction complex (COM).
Depending on the orientation of the ·OH radical, one can
distinguish two possible van der Waals complexes (COMO

and COMI in Figure 1). In the outer complex (COMO), the
·OH radical is further from the center of the mass of the
complex. For the inner one (COMI), the ·OH radical is closer
to the center of mass of the van der Waals complex. Despite
this structural difference, both complexes exhibit rather
similar standard reaction enthalpies (Table 1). The outer
complex, COMO, is the initial structure for the terminal (TO)
and nonterminal additions (NTO) as well as for the indirect
hydrogen abstraction (AO) reactions. In contrast to this, the
indirect hydrogen abstraction cannot take place in COMI,
since the distance between the closest hydrogen and the
oxygen is too large (3.876 Å) as can be seen in Figure 1.
The corresponding distance in COMO is only 2.826 Å, but
the two van der Waals complexes are almost identical in
the rest of the geometrical parameters. In the IRC calculation
started from transition state of AO, the ·OH radical ap-
proaches the double bond of the 1,4-pentadiene which shows
that there is a pathway between AO and COMO.

The difference between the standard reaction entropies for
the complex formation is 6.3 J mol-1 K-1, which might be
due to the interaction of the oxygen with the bisallylic
hydrogen (Habs). This difference has only a small contribution
to the standard reaction Gibbs free energy (Table 1). Our
calculations show that there is no significant energetic
difference between the existing reaction channels started from
the COMO and the COMI (the maximum deviation is smaller

than 2.5 kJ mol-1). Thermodynamic properties of all these
reactions are listed in Table 1. Because the addition reactions
from COMO and COMI differ in chirality and structural
parameters, so they differ slightly in enthalpy. Due to this,
the order of channels in the activation enthalpy can be
changed. These effects are rather small.

As Figure 2 shows, all of channels associated with COMO

have transition states that are below the entrance enthalpy
level. The energetically most favored channel is the indirect
hydrogen abstraction (AO) reaction (∆H°rel )-8.0 kJ mol-1,
∆‡H° ) 2.5 kJ mol-1). The products of this reaction are the
resonance stabilized 1,4-pentadien-3-yl and a water molecule
(PAO). This reaction can also be considered as a prototype
for bisallylic H-abstraction reactions, since the 1,4-pentadien-
3-yl radical has five electrons delocalized on five carbon
atoms,19 which is a conjugated diallyl radical. The reaction
is strongly exothermic (-167.9 kJ mol-1). Its transition state
structure (AO) shows strongly reactant-like behavior, since
the O-Habs distance (1.327 Å) is significantly larger than
the O-H distance (0.957 Å) in the water molecule. The

Scheme 2. Schematic Picture about the Definition of
Different Thermodynamic Propertiesa

a Enthalpy, H, is the example, and it is also valid for entropy and
Gibbs free energy.

Figure 1. BH&HLYP/6-31G(d) optimized structures of the
inner (COMI) and outer (COMO) prereaction complexes as well
as minimum and transition state structures of the terminal
addition (T0O, PT0O), indirect abstraction (AO, PAO), and
nonterminal addition (NT0O, PNT0O) channels in the 1,4-
pentadiene + ·OH reaction system.

1474 J. Chem. Theory Comput., Vol. 4, No. 9, 2008 Szori et al.



C-Habs bond being broken (1.218 Å) is larger by 0.128 Å
than that in 1,4-pentadiene (1.090 Å). Due to the exother-
micity of this reaction, one may expect a low probability of
occurrence for the reverse reaction, an expectation that is
reinforced by the fact that the forward reaction has a large
negative standard Gibbs free energy (-169.5 kJ mol-1, Table
1).

The reaction with the highest activation enthalpy is the
terminal addition (T0O). If one compares the enthalpy of T0O

to that of COMO, then the enthalpy barrier is 4.8 kJ mol-1.
In this case, the product is a stable 4-pentenyl-1-ol radical
(PT0O). As one can see from Figure 1, the oxygen of the
·OH radical is still far (2.105 Å) from the terminal carbon
in the transition state of the terminal addition (T0O). In the
case of the product, PT0O, the C-O distance becomes shorter
(1.412 Å), while the CdC bond extends to 1.489 Å, so it
becomes more single bond like. The O-C-C angle increases
from 98.8° to 113.2°.

The transition states for the possible consecutive reaction
steps from the adducts PT0O and PNT0O were also character-
ized at the BH&HLYP/6-31G(d) level of theory (see the
Supporting Information). In most cases, their relative en-
thalpies were found to be 20 kJ mol-1 higher than the

entrance enthalpy. As it will be shown later on, these
channels are energetically unfavored in contrast to the two
corresponding channels of the nonterminal adduct. Due to
this fact, contribution of these channels to the overall kinetics
is expected to be negligible at room temperature, so they
are not considered further.

The third reaction channel studied is the nonterminal
addition reaction (NT0O). Its enthalpy is 3.2 kJ mol-1 relative
to that of COMO (Table 1). The geometrical parameters of
the nonterminal transition state are quite similar to that of
the terminal one (Figure 1). In this case, the oxygen of the
hydroxyl radical is also found to be far from the carbon,
2.096 Å. The C-C-O angle is also close to perpendicular,
96.6°.

Although the geometry of the 4-pentene-2-ol-1-yl radical
formed (PNT0O) also shows similarities to PT0O, it is more
reactive, since there are two possible low-lying transition
states. The energetically preferred one is the ring closing
reaction, NT1O, which gives the cyclopentanol-3-yl radical,
PNT1O. Although the enthalpy barrier of this reaction seems
to be rather large, 70.5 kJ mol-1, it is still below the enthalpy
level of the entrance channel, -45.4 kJ mol-1. It is also
interesting to note that the ring closing reaction is also
exothermic (∆rH°(NT1O) ) -78.4 kJ mol-1). The enthalpy
level of the cyclopentanol-3-yl radical is 26.4 kJ mol-1 lower
than that of the product of the hydrogen abstraction, so the
product radical is 194.3 kJ mol-1 more stable compared to
the level of 1,4-pentadiene and hydroxyl radical. In its
transition state (Figure 3), the distance between the two
terminal carbons is 2.231 Å, which is about 0.7 Å larger
than that found in the product (1.533 Å). The latter distance
is in accord with a single carbon-carbon bond. The
C-C · · ·C and C · · ·C-C angles also change significantly on
going from the transition state to the product (Figure 3), the
former extending from 87.8° to 104.2°, while the latter is
88.6° in the transition state structure and 103.4° in the
product.

The other channel is the carbon-carbon bond scission,
which gives vinyl alcohol as well as allyl radical as products
(PNT2O). Its transition state is product-like, as one can see
from Figure 3. The broken bond distance is somewhat larger
than 2.0 Å in the transition state, 2.096 Å. The enthalpy of

Table 1. Standard Reaction, Activation, and Relative Enthalpies (∆rH°, ∆‡H°, and ∆H°rel(TS) in kJ mol-1) and Standard
Reaction and Activation Entropies (∆rS° and ∆‡S° in J mol-1K-1) for the Reactions of 1,4-Pentadiene with the Hydroxyl
Radical, Obtained from Calculations Performed at the QCISD(T)/cc-pVTZ//BH&HLYP/6-31G(d) Level of Theory

∆rH°
(kJ mol-1)

∆rS°
(J mol-1 K-1)

∆rG°
(kJ mol-1)

∆H°rel(TS)
(kJ mol-1)

∆‡H°
(kJ mol-1)

∆‡S°
(J mol-1 K-1)

∆‡G°
(kJ mol-1)

Outer
COMO -10.5 -99.7 19.2 - - - -
AO -167.9 5.3 -169.5 -8.0 2.5 -22.8 9.3
T0O -110.4 -128.5 -72.1 -5.7 4.8 -22.7 11.6
NT0O -115.9 -136.1 -75.3 -7.3 3.2 -28.5 11.7
NT1O -78.4 -32.4 -68.7 -45.4 70.5 -32.6 80.2
NT2O 20.3 157.3 -26.6 -25.5 90.4 0.4 90.3

Inner
COMI -11.8 -106.0 19.8 - - - -
T0I -111.3 -131.3 -72.2 -9.2 2.6 -25.7 10.3
NT0I -118.2 -139.1 -76.8 -6.9 4.9 -26.2 12.7
NT1I -76.1 -29.5 -67.3 -47.9 70.3 -28.7 78.9
NT2I 22.6 161.3 -25.4 -26.6 91.7 2.1 91.0

Figure 2. Standard enthalpy diagram for the energetically
preferred reactions of 1,4-pentadiene with ·OH. The values
are obtained at the QCISD(T)/cc-pVTZ//BH&HLYP/6-31G(d)
level of theory.
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NT2O is 90.4 kJ mol-1 relative to PNT0O, and the reaction
itself is slightly endothermic (∆rH°(NT2O) ) 22.6 kJ mol-1).
Surprisingly, the standard activation entropy is close to zero
(0.4 J mol-1 K-1), and the reverse reaction has also a
relatively large enthalpy barrier (70.1 kJ mol-1). This value
indicates that the bimolecular reverse reaction is not favored
energetically. Thermodynamically, PNT2O is favored over
PNT0O at room temperature.

Interestingly, 1,4-pentadiene is not only important as a
model of PUFAs but also is found in mineral and vegetable
oils. Consequently, its oxidation by hydroxyl radical also
has a great impact on combustion chemistry.20,21 Further-
more, the polyunsaturated hydrocarbons are also known to
be present in the atmosphere as anthropogenic and biogenic
volatile organic compounds (VOC).22,23

Reactions of Arachidonic Acid (AA) with Hydroxyl
Radical. Given its relevance, the oxidation of arachidonic
acid (AA) is frequently assayed using a wide variety of
experimental setups, including HPLC/MS/MS.6,7 Although
these experiments are state-of-the-art, only stable products
can be detected. Since abstraction of hydrogen by the ·OOH
radical cannot be fast at the bisallylic position,10 the ·OH
radical is considered as a radical source in the first step of
lipid peroxidation.5 This prompted us to study possible initial
steps for the AA oxidation by the ·OH radical.

For several ω-3 PUFA species, different conformations
were studied. The extended conformer was found to be the
global minimum in vacuum.24 Based on this result, the
extended conformer of AA was used as an initial structure
in our work. The reactions studied can be found in Figure
4, using the analogy of the 1,4-pentadiene + ·OH reaction
involving hydrogen abstraction (AA-AO) and nonterminal-
like addition (AA-NT0O) and its consecutive steps (AA-NT1O

and AA-NT2O). All of these channels were found, and the
optimized structures of their corresponding critical points are
shown in Figure 5. There are four double bonds in AA, and
each may form a van der Waals complex (the ·OH radical

can approach the AA at the ω-6, ω-9, ω-12, and ω-15
positions, using the notation of Scheme 1). We only consider
the AA + ·OH reactions Via the ω-9 van der Waals
complex in this work (Figure 4), since our aim is to show
the mechanism of formation of isoprostane-like species.
There is no doubt that reactions involving other types of
prereaction complexes (ω-6 or ω-12 or ω-15) can also
occur, since the bond energies of bisallylic hydrogens do
not depend strongly on their position in the chain.25 In these
cases, only the positions of the five-membered rings in AA-
PNT1O as well as the sizes of the carbon chains in the
products of AA-PNT2O would vary.

Comparison of Figure 5 with Figure 1 and Figure 3 shows
generally a good structural agreement between the 1,4-
pentadiene and the AA reactions. Two exceptions stand out:
the different is a little larger in comparisons of AA-COMO

vs COMO as well as AA-AO vs AO, respectively. The ·OH
and CdC double bond are somewhat closer in the AA-
COMO. This could be the consequence of the steric effects
in the case of weakly bonded structures. The transition state
of the abstraction reaction (AA-AO in Figure 5) seems to be
of a more earlier type compared to that of 1,4-pentadiene
and ·OH (AO in Figure 1), since the O · · ·Habs is found to be
1.405 Å which is 1.327 Å in the case of the 1,4-pentadiene
reaction. Furthermore, the C · · ·Habs distance also becomes
shorter by 0.029 Å.

If one compares the values in Table 1 to those in Table 2,
the difference in enthalpy between 1,4-pentadiene and
corresponding AA reactions are in general less than 11 kJ
mol-1. The single exception is the reaction enthalpy of the
ring closing reaction, NT1O, 27.1 kJ mol-1. This difference

Figure 3. BH&HLYP/6-31G(d) optimized transition state
structures for the five-membered ring formation reaction
(NT1O) and for the bond dissociation reaction (NT2O) from
the nonterminal addition adduct (PNT0O).

Figure 4. Possible nonenzymatic pathways for oxidation of
arachidonic acid (AA) as a lipid-oxidation example. The
pathways are suggested based on the radical reaction of 1,4-
pentadiene with the hydroxyl radical. The pattern of 1,4-
pentadiene is indicated by thick lines.
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may be due to a steric constraint caused by the ring formed
in the reaction.

Furthermore, the AA-AO and AA-NT0O activation enthal-
pies are slightly negative (-1.5 and -3.0 kJ mol-1,
respectively). Compared to the activation enthalpies of 1,4-
pentadiene and AA reaction systems, the difference is found
to be as small as 0.6 kJ mol-1 for AO, -2.5 kJ mol-1 for
NT0O, -3.3 kJ mol-1 for NT1O, and 3.4 kJ mol-1 for NT2O.

The most important result to emphasize is that the
transition states for the AA + ·OH reaction system are ring
closing and bond scission, and these states lie energetically
below the entrance enthalpy level (AA + ·OH). The product
of the ring closing reaction is AA-PNT1O. The bond scission
reaction produces a shortened fatty acid, 1-carboxyl-(Z,Z)-
deca-5,8-diene-10-yl radical, and an eneol, the (Z,Z)-deca-
1,4-diene-1-ol molecule (Figure 4 and Figure 5). The (Z,Z)-

deca-1,4-diene-1-ol might convert to its tautomer, Z-4-ene-
decanal. However, subsequent reactions become far too
complex to be characterized since the number of possible
reactions increases with the number of components.

The effects of the surrounding lipids are estimated using
the CPCM model (Table 2) for the reaction system AA +
·OH. The largest contribution of solvation to reaction Gibbs
free energy is found in the case of the hydrogen abstraction
(∆∆rG°solv(AA-AO) ) -10.8 kJ mol-1). All the remaining
∆∆rG°solv are moderate with absolute values less than 7 kJ
mol-1. The largest contribution of solvation to activation
Gibbs free energy (10.8 kJ mol-1) is noted for the ring
closing reaction (AA-NT1O). For the other transition states,
the solvation has no significant influence on the free energy
profile.

Figure 5. Transition state and minimum structures for the reactions of arachidonic acid (AA) with ·OH radical, obtained at the
BH&HLYP/6-31G(d) level of theory.

Table 2. Standard Reaction, Activation, and Relative Enthalpies (∆rH°, ∆‡H°, and ∆H°rel(TS) in kJ mol-1) and Standard
Reaction and Activation Entropies (∆rS° and ∆‡S° in J mol-1 K-1) for the Reactions of Arachidonic Acid (AA) with the
Hydroxyl Radical, Obtained from Calculations at the ONIOM(QCISD(T)/cc-pVTZ:BH&HLYP/6-31G(d))//BH&HLYP/6-31G(d)
Level of Theorya

∆rH°
(kJ mol-1)

∆rS°
(J mol-1 K-1)

∆rG°
(kJ mol-1)

∆H°rel(TS)
(kJ mol-1)

∆‡H0

(kJ mol-1)
∆‡S0

(J mol-1 K-1) ∆‡G0 (kJ mol-1)

Outer
AA-COMO -13.1 -115.8 21.4 (4.7) - - - -
AA-AO -173.6 7.5 -175.9 (-10.8) -10.0 3.1 -36.4 13.9 (-3.4)
AA-NT0O -123.2 -146.8 -79.4 (0.3) -12.4 0.7 -16.8 0.7 (-0.1)
AA-NT1O -51.3 -46.5 -37.4 (-6.3) -56.0 67.2 -39.5 78.9 (10.8)
AA-NT2O 26.1 169.8 -24.5 (-3.9) -29.4 93.8 3.7 92.7 (0.8)

a Values in parentheses are the contributions of the bulk solvation (lipid) to Gibbs free energy (∆∆G°solv) calculated by CPCM-BH&HLYP/
6-31G(d) single point calculation (ε ) 4.0).
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Initial steps of lipid peroxidation have been well studied
with density functional methodology, both in the nonenzy-
matic process26 as well as in the iron center of the (soybean)
lipoxygenase enzyme.27,28 Besides hydrogen abstraction, the
addition of molecular oxygen is also included in the
nonenzymatic study. These results, together with our previ-
ously published ones, are collected in Table 3. As one can
see from this table, the Gibbs free energy of complex
formation is in the range of 18.4 to 21.4 kJ mol-1, depending
on the methods used and the system studied; this difference
is around the chemical accuracy. In contrast to this, the
difference in the reaction Gibbs free energy of the bisallylic
radical formation is about -169.0 kJ mol-1 for the 1,4-
pentadiene + ·OH and (3Z,6Z)-nonadiene + ·OH reactions.
The latter system was calculated at the MPWB1K//MG3S//
MPWB1K/6-31+G(d,p) level of theory, and it was used
by Tejero et al.26 as a model for the lipid peroxidation of
AA. The reaction Gibbs free energy of (2Z,5Z)-heptadiene
+ ·OH (calculated at the G3MP2//BH&HLYP/6-31G(d)
level of theory) and AA + ·OH are also almost identical.
The difference between the two groups is only 13 kJ mol-1,
which can be explained by the sum of several errors such as
the difference in the computation methods. Surprisingly, the
energetics of monoallylic and bisallylic hydrogen abstractions
differ only by 16.3 kJ mol-1 in the case of the (3Z,6Z)-
nonadiene + ·OH reaction system. That difference is 48 kJ
mol-1 in the case of the (2Z,5Z)-heptadiene + ·OH reaction
calculated at the G3MP2//BH&HLYP/6-31G(d) level of
theory.17

Borowski et al.27 published their theoretical work on the
enzymatic process including the abstraction reaction and the
O2 addition. They studied the reaction between (Z,Z)-hepta-
2,5-diene and the active site of the soybean enzyme (SLO-
1). The initial structure of the active site is characterized by
X-ray measurements. In this case, geometries were charac-
terized using the B3LYP density functional and the LanL2DZ
basis set with an effective core potential (ECP) for the Fe
atom and the D95 basis set for H, C, N, and O atoms. The
B3LYP/6-311+G(d,p) level of theory was used for single

point calculations. The first catalytic step consisted of a
hydrogen atom transfer from the hydrocarbon to the hydrox-
ide group bound to the ferric ion. This process proceeds Via
an early transition state with the activation energy amounting
to 50.6 kJ mol-1, and the reaction energy is found to be
-52.7 kJ mol-1. This activation barrier seems to be quite
high compared to our results of nonenzymatic hydrogen
abstraction (with pseudo negative activation barrier). On the
one hand, this result might be due to the inaccuracy of the
available computational level for iron containing species. On
the other hand, increased activation barrier in the enzymatic
process can be the price paid for site-selective oxidation.

Tejero et al. also studied the (Z,Z)-hepta-2,5-diene + ·OH
reaction28 using a similar model for the enzymatic surround-
ings to that used by Borowski. They reported that the
standard Gibbs free energy barrier for the hydrogen abstrac-
tion was as high as 87.0 kJ mol-1, obtained using the
B3LYP/6-311+G(d,p)//B3LYP/LanL2DZ level of theory.
However, the differences between Borowski’s and Tejero’s
results might arise mainly from conformational differences
or because the extended model involving iron could be
calculated only at lower accuracy.

The evolution of living organisms in an oxidizing atmo-
sphere has resulted in a complex array of antioxidation
mechanisms within cells to protect critical biomolecules from
oxidative modifications. Because lipids are often the initial
barrier to the free diffusion of reactive oxygen species into
the cell, they themselves become targets of nonenzymatic
oxidation reactions.29 These nonenzymatic processes result
in a wide variety of products having diverse biological
functions, such aldehydes, shorter fatty acids, and isopros-
tanoids. While the first two groups are toxic, isoprostanoids
with appropriate chirality (and within a certain concentration
range) are essential for living cells. In addition, our calcula-
tions suggest that nonenzymatic formation of isoprostanoids
is energetically favored. Based on these facts, we might
suspect that in the course of biomolecular evolution, these
nonenzymatic processes predated the enzymatic ones. Spe-
cific enzymes might have evolved for the purpose of
controlling selectivity (the required products and their
appropriate stereochemistry).

4. Conclusion

Employing the 1,4-pentadiene + ·OH reaction system, the
energetically preferred oxidation pathways are studied for
the PUFA using first-principles methods. We find that the
terminal and nonterminal additions and the indirect hydrogen
abstraction reaction have pseudonegative activation enthal-
pies due to the prereaction complex. The H-abstraction is
found to be the most exothermic reaction among those
studied (-167.9 kJ mol-1).

The nonterminal adduct (the 4-pentene-2-ol-1-yl radical) is
able to react forward to produce cyclopentanol-3-yl radical as
product. The enthalpy level of the cyclopentanol-3-yl radical
is 26.4 kJ mol-1 lower than that of the product of the hydrogen
abstraction. The activation enthalpy of this ring closing reaction
is significantly smaller than the exothermicity of the nonterminal
addition. Consequently, this reaction is expected to be fast.
Furthermore, there is also a possible channel for bond scission,

Table 3. Standard Gibbs Free Energy for the Formation of
the Prereaction Complex, ∆G°(COMO) and for the Indirect
Hydrogen Abstraction Reaction (AO), ∆rG°, As Well As the
Activation Gibbs Free Energy of the Indirect Hydrogen
Abstraction Reaction, ∆‡G° (in kJ mol-1)a

systems monoallylic bisallylic

1,4-pentadiene + ·OH ∆G°(COMO) - 19.2
A ∆rG°(AO) - -169.5
this work ∆‡G°(AO) - 9.3
(2Z,5Z)-heptadiene + ·OH ∆G°(COMO) 17.9 18.4
B ∆rG°(AO) -134.2 -182.2
ref 17 ∆‡G°(AO) 29.3 5.7
(3Z,6Z)-nonadiene + ·OH ∆G°(COMO) 24.3 21.3
C ∆rG°(AO) -152.7 -169.0
ref 26 ∆‡G°(AO) 30.5 17.6
arachidonic acid + ·OH ∆G°(COMO) - 21.4
D ∆rG°(AO) - -175.9
this work ∆‡G°(AO) - 13.9

a A: QCISD(T)/cc-pVTZ//BH&HLYP/6-31G(d) level of theory. B:
G3MP2//BH&HLYP/6-31G(d) level of theory. C: MPWB1K/MG3S//
MPWB1K/6-31+G(d,p) level of theory. D: ONIOM(QCISD(T)/cc-
pVTZ:BH&HLYP/6-31G(d))//BH&HLYP/6-31G(d) level of theory.
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which gives allyl radical and vinyl alcohol as products. Although
this reaction is slightly endothermic, its activation enthalpy is
still below the entrance enthalpy level of the 1,4-pentadiene +
·OH reaction by 25.5 kJ mol-1.

Since the PUFA have very often a -HC)CH-CH2-
CH)CH- moiety, one of them, arachidonic acid (AA), is
studied as an analog to the reaction between 1,4-pentadiene
and the hydroxyl radical. The thermodynamic properties
obtained using the ONIOM technique for AA and QCISD(T)/
cc-pVTZ//BH&HLYP/6-31G(d) for 1,4-pentadiene are found
to be similar. Nonenzymatic ring closing and bond scission
can also be energetically favored since the energetics of the
transition states are still below the entrance enthalpy level
(AA + ·OH). As far as we know, our results demonstrate
for the first time a possible, ab initio-based mechanism for
the nonenzymatic biosynthesis of isoprostane-like structures
from AA without the presence of molecular oxygen.

It is believed that the nonenzymatic ring closing and bond
scission can also occur in the case of other PUFAs, such as
docosahexaenoic acid (DHA).

Although these nonenzymatic radical reactions are ener-
getically favored and they can occur in biological systems
as spontaneous and fast processes, they are not selective.
Specific enzymes might be responsible mainly for controlling
the required products and their appropriate stereochemistry.
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Abstract: A novel approach for representing the intramolecular polarizability as a continuum
dielectric is introduced to account for molecular electronic polarization. It is shown, using a finite-
difference solution to the Poisson equation, that the electronic polarization from internal continuum
(EPIC) model yields accurate gas-phase molecular polarizability tensors for a test set of 98
challenging molecules composed of heteroaromatics, alkanes, and diatomics. The electronic
polarization originates from a high intramolecular dielectric that produces polarizabilities consistent
with B3LYP/aug-cc-pVTZ and experimental values when surrounded by vacuum dielectric. In
contrast to other approaches to model electronic polarization, this simple model avoids the
polarizability catastrophe and accurately calculates molecular anisotropy with the use of very
few fitted parameters and without resorting to auxiliary sites or anisotropic atomic centers. On
average, the unsigned error in the average polarizability and anisotropy compared to B3LYP
are 2% and 5%, respectively. The correlation between the polarizability components from B3LYP
and this approach lead to a R2 of 0.990 and a slope of 0.999. Even the F2 anisotropy, shown
to be a difficult case for existing polarizability models, can be reproduced within 2% error. In
addition to providing new parameters for a rapid method directly applicable to the calculation of
polarizabilities, this work extends the widely used Poisson equation to areas where accurate
molecular polarizabilities matter.

1. Introduction

The linear response of the electronic charge distribution of
a molecule to an external electric field, the polarizability, is
at the origin of many chemical phenomena such as electron
scattering,1 circular dichroism,2 optics,3 Raman scattering,4

softness and hardness,5 electronegativity,6 and so forth. In

atomistic simulations, polarizability is believed to play an
important and unique role in intermolecular interactions of
heterogeneous media such as ions passing through ion
channels in cell membranes,7 in the study of interfaces,8 and
in protein-ligand binding.9

Polarizability is considered to be a difficult and important
problem from a theoretical point of view. Much effort has
been invested in the calculation of molecular polarizability
at different levels of approximation. At the most fundamental
level, electronic polarization is described by quantum
mechanics (QM) electronic structure theory such as extended
basis set density functional theory (DFT) and ab initio
molecular orbital theory. However, the extent of the com-
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putational resources required is an impediment to the wide
application of these methods on large molecular sets or on
large molecular systems such as drug-like molecules.10 To
circumvent these limitations, empirical physical models based
on classical mechanics have been parametrized to fit
experimental or quantum mechanical polarizabilities.

In this article, we explore a new empirical physical model
to account for electronic polarizability in molecules. The
electronic polarization from internal continuum (EPIC) model
uses a dielectric constant and atomic radii to define the
electronic volume of a molecule. The molecular polarizability
tensor is calculated by solving the Poisson equation (PE)
with a finite difference algorithm. The concept that a
dielectric continuum can account for solute polarizability has
been examined previously. For example, Sharp et al.11

showed that condensed phase induced molecular dipole
moments are accounted for with the continuum solvent
approach and that it leads to accurate electrostatic free energy
of solvation. More recently Tan and Luo12 have attempted
to find an optimal inner dielectric value that reproduces
condensed phase dipole moments in different continuum
solvents. In spite of these efforts, we found that none of these
models can account correctly for molecular polarizability.
Here, the concept is explored with the objective of producing
a high accuracy polarizable electrostatic model. Therefore,
we focus on the optimization of atomic radii and inner
dielectrics to reproduce the B3LYP/aug-cc-pVTZ polariz-
ability tensor.

In this preliminary work, we seek to establish the sound-
ness and accuracy of the EPIC model in the calculation of
the molecular polarizability tensor on three classes of
molecules: homonuclear diatomics, heteroaromatics, and
alkanes. These molecular classes required special attention
with previous polarizable models as a result of their high
anisotropy.13-15 Overall, 53 different molecules are used to
fit our model and 45 molecules to validate the results. These
specific questions are addressed: Can the EPIC model
accurately calculate the average polarizability? If so, can it
further account for the anisotropy and the orientation of the
polarizability components? How few parameters are needed
to account for highly anisotropic molecules, and how does
this compare to other polarizable models? How transferable
are the parameters obtained with this model? Is the model
able to account for conformational dependency? In answering
these questions, we obtained a fast and validated method
with optimized parameters to accurately calculate the mo-
lecular polarizability tensor for a large variety of heteroaro-
matics not previously considered.

The remainder of the article is organized as follows. In
the next section, we briefly review the most successful
existing polarizable approaches, focusing on aspects relevant
to this study. Then we introduce the dielectric polarizable
method with a polarizable sphere analytical model. A
methodology section in which we outline the computational
details follows. The molecular polarizability results are then
reported. This is followed by a discussion and conclusion.

2. Existing Empirical Polarizable Models

2.1. Point Inducible Dipole. The point inducible dipole
(PID) model was first outlined by Silberstein in 1902.16 This
model has been extensively used to calculate molecular
polarizability14,15,17-22 and to account for many-body effects
in condensed phase simulations.23-25 Typically, in the PID
model, an atom is a polarizable site where the electric field
direction and strength together with the atomic polarizability
define the induced atomic dipole moment. Since the electric
field at an atomic position is in part due to other atoms’
induced dipoles, the set of equations must be solved
iteratively (or through a matrix inversion). In 1972, Appleq-
uist19 showed that the PID can accurately reproduce average
molecular polarizability of a diverse set of molecules but
also that the mathematical formulation of the PID can lead
to a polarizability catastrophe. Briefly, when two polarizable
atoms are close to each other, the solution to the mathemati-
cal equations involved is either undetermined (with the matrix
inversion technique) or the neighboring dipole moments
cooperatively increase to infinity. To circumvent this prob-
lem, Thole14,22 modified the dipole field tensor with a
damping function, which depends on a lengthscale parameter
meant to represent the spatial extent of the polarized
electronic clouds; his proposed exponential modification is
still important and remains in use.13,14,26

2.2. Drude Oscillators. The Drude oscillator (DO) rep-
resents electronic polarization by introducing a massless
charged particle attached to each polarizable atom by a
harmonic spring.27 When the Drude charge is large and
tightly bound to its atom, the induced dipole essentially
behaves like a PID. The DO model is attractive because it
preserves the simple charge-charge radial Coulomb elec-
trostatic term already present and it can be used in molecular
dynamics simulation packages without extensive modifica-
tions. The DO model has not yet been extensively param-
etrized to reproduce molecular polarizability tensors, but
recent results suggest that it could perform as well as PID
methods. Finally, the DO model also requires a damping
function to avoid the polarizability catastrophe.26

2.3. Fluctuating Charges. A third class of empirical
model, called fluctuating charge (FQ), was first published
in a study by Gasteiger and Marsili28 in 1978 to rapidly
estimate atomic charges. Subsequently, FQ was adapted to
reproduce molecular polarizability and applied in molecular
dynamic simulations.29,30 It is based on the concept that
partial atomic charges can flow through chemical bonds from
one atomic center to another based on the local electrostatic
environment surrounding each atom. The equilibrium point
is reached when the defined atomic electronegativities are
equal. The FQ model, like the DO, has mainly been used in
condensed phase simulations and not specifically param-
etrized to reproduce molecular polarizabilities. A major
problem with FQ is the calculation of directional polariz-
abilities (eigenvalues of the polarizability tensor). For planar
or linear chemical moieties (ketones, aromatics, alkane
chains, etc.) the induced dipole can only have a component
in the plane of the ring or in line with the chain. For instance,
the out-of-plane polarizability of benzene can only be
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correctly calculated if out-of-plane auxiliary sites are built.
For alkane chains, though, there is no simple solution.31 For
this reason, the ability of the FQ model to accurately
represent complex molecular polarizabilities is clearly limited.

2.4. Limitations with the PID Related Methods. The
PID and the related models have been parametrized and show
an average error on the average polarizability around 5%.
However, errors in the anisotropy are often around 20% or
higher.15,20 Diatomic molecules are not handled correctly by
any of these methods, leading to errors of 82% in the
anisotropy for F2, for example.13,14 Heteroaromatics, which
are abundant moieties in drugs, are often poorly described
by PID methods. This limitation is due to the source of
anisotropy in the PID model, that is, the interatomic dipole
interaction located at static atom positions. It is nevertheless
possible to improve these models. For example, using full
atomic polarizability tensors instead of isotropic polariz-
abilities has reduced the errors in polarizability components
from 20% to 7%.20,21 In the case of the DO model, acetamide
polarizabilities have been corrected by the addition of atom-
type-dependent damping parameters and anisotropic har-
monic springs.32 In these cases, the improvement required a
significant amount of additional parameters which brings an
additional level of difficulty in their generalization. As
illustrated below, our model seems to address most of these
complications without additional parameters and complexity.

3. Dielectric Polarizability Model

The mathematical model that we explore in this article is
based on simple concepts that have proved extremely useful
in chemistry.33-38 We propose a specific usage that we
clarify and describe in this section.

3.1. Model. Traditionally in Poisson-Boltzmann (PB)
continuum solvent calculations, the solute is described as a
region of low dielectric containing a set of distributed point
charges; the polar continuum solvent (usually water) is
described by a region of high dielectric. This theoretical
approach gives the choice to either include average solution
salt effects (PB) or to use the pure solvent (PE). Solving PE
for such a system is equivalent to calculating a charge density
around the solute surface at the boundary where the dielectric
changes.39 This, among other things, allows the calculation
of the free energy of charging of a cavity in a continuum
solvent where, at least in the case of water, polarization
comes mostly from solvent nuclear motion averaging. While
the dielectric boundary is de facto representing the molecular
polarization, the dielectric constants and radii employed
traditionally are parametrized by fitting to energies (such as
solvation or binding free energies) without regard for the
molecular polarizabilities themselves. These energies are also
dependent on details of the molecular electronic charge
distribution, the solvent/solute boundary, and sometimes the
nonpolar energy terms, all of which obfuscate the param-
etrization with respect to the key property of molecular
polarizability.

Our approach is to use an intramolecular effective
dielectric constant, together with associated atomic radii, to
accurately represent the detailed molecular polarizability. For
this to be a widely applicable model of polarizability, the

generality between related chemical species of a given set
of intramolecular effective dielectric constants and associated
atomic radii would have to be demonstrated. Such a
polarizability model, independent per se of the molecule’s
charge distribution, could then subsequently be combined
with a suitable static charge model to produce a polarizable
electrostatic term applicable to force fields.

To evaluate the model, the simplest starting point is gas-
phase polarizabilities, using a higher dielectric value inside
the molecule and vacuum dielectric outside.40 This way, the
charge density formed at the exterior/interior boundary comes
from the polarization of the molecule alone. Comparison of
the polarizability tensors from such calculations directly to
those from B3LYP/aug-cc-pVTZ calculations allows proof-
of-concept of the model. The resulting parameters can be
used to rapidly calculate molecular polarizabilities on large
molecules.

To calculate the molecular polarizability, we first solve
EPIC for a system in which the interior/exterior boundary
is described by a van der Waals (vdW) surface, an inner
dielectric, and a uniform electric field. The electric field is
simply produced from the boundary conditions when solving
on a grid (electric clamp). From the obtained solution, it is
possible to calculate the charge density from Gauss’ law (i.e.,
from the numerical divergence of the electric field), and the
induced dipole moment is simply the sum of the grid charge
times its position as shown by eq 1 below.

µFind )∑
i)1

grid

rFi · qi (1)

Knowing the applied electric field, it is then possible, as
shown in eq 2, to compute the polarizability tensor given
that three calculations are done with the electric field applied
in orthogonal directions; in eq 2, i and j can be x, y, or z.

Rij ) µi
ind/Ej (2)

3.2. Spherical Dielectric. For the sake of clarifying
the internal structure of the model, let us first consider the
induced polarization of a single atom in vacuum under the
influence of a uniform external electric field: the EPIC model
for an atom. Given a sphere of radius R, a unitless inner
dielectric εin and the uniform electric field E, we can exactly
calculate the induced dipole moment with eq 3.

µFind ) 4πε0(εin - 1

εin + 2)R3 ·E
F

(3)

Here, the atomic polarizability is given by the electric field
E prefactor, which is a scalar given the symmetry of the
problem. The induced dipole moment originates from
the accumulation of a charge density at the boundary of the
sphere opposing the uniform electric field.39 From eq 3, we
see that the polarizability has a cubic dependency on
the sphere radius and that the inner dielectric can reduce the
polarizability to zero (εin)1), while the upper limit of its
contribution is a factor of 1 (εin . 1). The contribution of
εin to the atomic polarizability asymptotically reaches a
plateau as shown in Figure 1. Thus, at high values of εin,
the atomic radius becomes the dominant dependency in the
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electric field prefactor; we find similar characteristics for
nonspherical shapes.

It is interesting to make a parallel between eq 3 and the
PID model, where the polarizable point would be located
exactly at the nucleus. In this particular case, it is possible
to equate the polarizability from PE, induced by the radius
and the dielectric, to any point polarizability.11 However,
when the electric field is not uniform, the PID induced atomic
dipole originating from the evaluation of the electric field at
a single point may not be representative, leading to inac-
curacies.41 This is in contrast with the EPIC model that builds
the response based on the electric field lines passing locally
through each part of the atom’s surface, allowing a response
more complex than that of a point dipole. In molecules, the
atomic polarizabilities of the PID model do not find their
counterparts in the EPIC model since it is difficult to assign
nonoverlapping dielectric spheres to atoms and obtain the
correct molecular behavior. The Cl2 molecule studied in this
work is an example.

4. Methods

4.1. Calculations.PriortotheDFTcalculation,SMILES42-44

strings of the desired structures were transformed into
hydrogen-capped three-dimensional structures with the pro-
gram OMEGA.45 The n-octane conformer set was also
obtained from OMEGA. The resulting geometries were
optimized with the Gaussian ’0346 program using B3LYP47-49

with a 6-31++G(d,p) basis set50,51 without symmetry. The
atomic radii and molecular inner dielectrics were fit based
on molecular polarizability tensors calculated at the B3LYP
level of theory52 with the Gaussian ’03 program. The
extended Dunning’s aug-cc-pVTZ basis set,53,54 known to
lead to accurate gas phase polarizabilities, was used.55 An
extended basis set is required to obtain accurate gas phase
polarizabilities that would otherwise be underestimated.

The solutions to the PE were obtained with the finite
difference PB solver Zap56 from OpenEye Inc. modified to
allow voltage clamping of box boundaries to create a uniform
electric field. The electric field is applied perpendicularly to
two facing box sides (along the z axis). The difference
between the fixed potential values on the boundaries is set
to meet: ∆� ) Ez × ∆Z, where ∆� is the difference in
potential, Ez is the magnitude of the uniform electric field,
and ∆Z is the grid length in the z direction. The salt
concentration was set to zero, and the dielectric boundary
was defined by the vdW surfaces. The grid spacing was set

to 0.3 Å, and the extent of the grid was set such that at least
5 Å separated the box wall from any point on the vdW
surface. As detailed in the Supporting Information, grid
spacing below 0.6 Å did not show significant deterioration
of the results. Small charges of (0.001e were randomly
assigned to the atoms to ensure Zap would run, typically
converging to 0.000001 kT.

In tables where optimized parameters are reported, a
sensitivity value associated with each fitted parameter is also
reported. The sensitivity of a parameter corresponds to its
smallest variation, producing an additional 1% error in the
fitness function considering only molecules using this
parameter. The sensitivity is calculated with a three-point
parabolic fit around the optimal parameter value, and the
change required obtaining the 1% extra error is extrapolated.
Therefore, the reported sensitivity indicates the level of
precision for a given parameter and whether or not some
parameters could be eventually merged.

4.2. Fitting Procedure. Equation 4 shows the fitness
function F utilized in the fitting of the atomic radii and the
inner dielectrics.

F({R}, {ε})) 1
3N∑

i)1

N

∑
j)xx,yy,zz

|Rij
QM -Rij|

Rij
QM

+

1
Nθ

∑
i)1

Nθ 1- |VFij
QM · VFij|

1- cos 45° (4)

In eq 4, N corresponds to the number of molecules used
in the fit, Rij to the polarizability component j of the molecule
i, and νij to the eigenvector of the polarizability component
j of molecule i. Nθ is the number of nondegenerate eigen-
vectors found in all the molecules. This fitness function is
minimal when the three calculated polarizability components
are identical to the QM values and when the corresponding
component directions are aligned with the QM eigenvectors
of the polarizability tensor.

As shown in the Cl2 example of Figure 2, the hypersurface
of eq 4 has a number of local minima; it is important that
our fitting procedure allows these to be examined. Because
the calculations were fast, we decided to proceed in two
steps: First, a systematic search was carried out varying each
fitted parameter over a range and testing all combinations.
The 30 best sets of parameters were then relaxed using a
Powell minimization algorithm, and the set of optimized
parameters leading to the smallest error was kept.

4.3. Definitions. The polarizability tensor is a symmetric
3 × 3 matrix derived from six unique values. It can be used
to calculate the induced dipole moment µi (i takes the value
x, y, and z) given a field vector E:

µi
ind )RixEx +RiyEy +RizEz (5)

In this work, we use the eigenvalues and eigenvectors of
the polarizability tensor. The eigenvalues are rotationally
invariant, and their corresponding eigenvectors indicate
the direction of the principal polarizability components.
The three molecular eigenvalues are named Rxx, Ryy, and
Rzz, and by convention Rxx e Ryy e Rzz. The average
polarizability (or isotropic polarizability) is calculated with
eq 6 below. We also define the polarizability anisotropy

Figure 1. Dielectric contribution to the sphere dielectric
continuum polarizability goes asymptotically to one and most
of the contributions are below εin ) 10.

Polarizabilities from Continuum Electrostatics J. Chem. Theory Comput., Vol. 4, No. 9, 2008 1483



in eq 7. This particular definition of anisotropy is an
invariant in the Kerr effect and has been often used in
the literature.57

Ravg )
Rxx +Ryy +Rzz

3
(6)

∆R)�(Rxx -Ryy)
2 + (Rxx -Rzz)

2 + (Ryy -Rzz)
2

2
(7)

Equation 7 can be rewritten in terms of only two independent
differences in the polarizabilities as shown in eq 8,

∆R) √a2 + b2 + ab (8)

where a ) Rzz - Ryy and b ) Ryy - Rxx. In the case of
degenerate molecules as in diatomics, eq 8 reduces to the
unsigned difference between two different polarizability
eigenvectors.

We now define errors as used in the rest of this article.
Equation 9 gives the average unsigned error of the ap-
proximated anisotropy (∆R) where N corresponds to the
number of molecules, Ri,avg to the average polarizability (eq
6) of molecule i, and QM corresponds to the DFT values.

δaniso )
1
N∑

i)1

N |∆Ri
QM -∆Ri|

Ri,avg
QM

(9)

Similarly, the average unsigned error of the average polar-
izability is defined by

δavg )
1
N∑

i)1

N |Ri,avg
QM -Ri,avg|

Ri,avg
QM

(10)

Finally, we define an average angle error between the
eigenvectors ν from QM and our parametrized model as

θ) 1
Nθ

∑
i)1

Nθ

|cos-1(VFi · VFi
QM)| (11)

We prefer the use of the error in the average polarizabiliy,
the anisotropy, and the deviation angle over the error in the
polarizability components or the tensor elements. This allows
us to analyze the physical origin of the errors and in particular
how much comes from anisotropy, normally a more stringent
property to fit.

4.4. Molecule Data Sets. Our data set is made to
challenge the EPIC model with anisotropic cases known to
be difficult. It is formed from three chemical classes:

Figure 2. EPIC model behavior is explored for Cl2. The average polarizability (a) and the anisotropy (b) isolines (in au) are
plotted as a function of the Cl atomic radius, used to define the vdW surface, and the value of the inner dielectric. The target Cl2
B3LYP values are 31.43 (average) and 18.24 (anisotropy) (cf. Table 1). The polarizability tensor error function (2|R⊥

QM - R⊥
EPIC|

+ |R|QM - R|EPIC|)/3Ravg
QM isolines in (c) identify the regions where the EPIC model matches the B3LYP polarizability tensor. The

external dielectric is set to one, and the internuclear distance of Cl2 is fixed at 2.05 Å. These figures show that a high dielectric
value is required to match the QM anisotropy and that a number of minima can be found on the error hypersurface.

Table 1. Compared Polarizabilities (au) of Diatomic
Molecules when the Radii and εin Are Fit to B3LYP/
aug-cc-pVTZ Polarizabilitiesa

R⊥ R| Ravg ∆R
δavg

b

(%)
δaniso

b

(%)

H2 EPIC (0.88, 7.8)c 4.92 6.83 5.55 1.91 0.1 0.3
(0.83)d 4.47 6.60 5.18 2.12 6.7 4.1
B3LYP 4.92 6.81 5.55 1.89
expe 4.86 6.28 5.33 1.42

N2 EPIC (1.02, 19.5)c 10.49 15.89 12.29 5.40 1.8 3.7
(1.03)d 10.35 15.58 12.09 5.23 0.2 2.3
B3LYP 10.42 15.38 12.07 4.96
expe 9.8 16.1 11.90 6.3

F2 EPIC (0.86, 20.5)c 6.26 12.64 8.39 6.37 0.5 1.5
(0.84)d 6.06 11.20 7.77 5.14 6.9 16.3
B3LYP 6.18 12.68 8.35 6.50

Cl2 EPIC (1.34, 19.3)c 25.64 43.90 31.73 18.26 0.9 0.1
(1.34)d 25.38 43.03 31.26 17.65 0.7 1.9
B3LYP 25.35 43.59 31.43 18.24
expe 24.5 44.6 31.15 20.1

Br2 EPIC (1.53, 17.5)c 36.84 62.42 45.37 25.57 1.0 2.2
(1.52)d 36.19 62.73 45.04 26.54 1.7 0.1
B3LYP 36.96 63.53 45.82 26.57

a Two fitting methods are involved: 1 radius and 1 dielectric per
element, 1 radius per element, and a single dielectric for all five.
b Error relative to B3LYP values using eqs 9 and 10 with N ) 1.
c The number in the parentheses are the optimal (radius Å,
dielectric) individually fit for each molecule. d The optimal radius
(in Å) fit for each individual diatomic is reported in parentheses
given a globally fit dielectric of 18.0. e Experimental values are
from ref 19.
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diatomics, heteroaromatics, and the alkanes. While not
comprehensive, these data sets were deemed sufficient for
proof of concept. Except for the diatomics, all the molecules
examined are subdivided into 12 data sets and 6 chemical
classes as in Figure 3. For each class there is a training set
(“-t” suffix), used in the parametrization, and a validation
set (“-v” suffix) to verify the transferability of the obtained
parameters.

Trying to cover a broad range of unsubstituted heteroaro-
matic molecules, we selected five classes of aromatics:
heteroaromatics, pyridones, pyrroles, furans, and thiophenes.
The aromatics are limited to C, H, and divalent N atoms.
The pyridones contain aromatic amides; while these also exist
under their hydroxypyridine tautomers, in water the equi-
librium is strongly driven toward the pyridone form, which
we exclusively study. The pyrroles, furans, and thiophenes
classes are made from the same scaffolds except differing
by one atomic element for each class. In the training sets,
balancing the number of molecules is important to avoid

overfitting. Each nondegenerate molecular polarizability
tensor contributes six datapoints (i.e., from six independent
tensor elements). Degenerate molecules contribute either four
or one independent data points, depending on the degree of
symmetry. The pyridones-v, the pyrroles-v, the thiophenes-
v, and the furans-v sets all contain multiple functional groups.

The alkanes-t set contains both small and large isotropic
molecules (methane and neopentane). It also contains aniso-
tropic molecules like trans-hexane. We included two con-
formers of butane and hexane because their isotropic
polarizability is similar but their anisotropy differs. Cyclic
species are also included as a result of their special nature.
The alkanes-v set contains fused cyclic alkanes and an octane
in two different conformations of which the trans form is
highly anisotropic. We also mixed cyclic alkanes with chain
alkanes in the validation set; all this with the desire of having
a validation set significantly different from the training set
to really assess the transferability of the fitted parameters.

Figure 3. Molecules used are divided in 12 data sets and 6 chemical classes: the heteroaromatics training set “aromatics-t” (a),
the heteroaromatics validation set “aromatics-v” (b), the pyridones training set “pyridones-t” (c), the pyridones validation set
“pyridones-v” (d), the furans training set “furans-t” (X ) O), the pyrroles training set “pyrroles-t” (X ) N), the thiophenes training
set “thiophenes-t” (X ) S) (e), the furans validation set “furans-v” (X ) O), the pyrroles validation set “pyrroles-v” (X ) N), the
thiophenes validation set “thiophenes-v” (X ) S) (f), the alkanes training set “alkanes-t” (g), and the alkanes validation set
“alkanes-v” (h). The X atoms in a molecule are all O, all S, or all NH. In the case of n-butane, n-hexane, and n-octane, two
conformers are considered: all trans (t) and gauche (g).
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For this reason, none of the molecules from the validation
sets are used in the parametrization.

5. Results

5.1. Diatomics: The Cl2 Polarizability Hypersurface.
The Cl2 homonuclear diatomic is the simplest molecule that
unveils the dependency of the polarizabilities on the radius
and the inner dielectric. In Figure 2, parameter hypersurfaces
are illustrated for Cl2 made of two spheres of radius R
separated by 2.05 Å (DFT equilibrium distance) within which
the inner dielectric is higher than one and the outer dielectric
set to the vacuum value of one. When the two spheres
overlap (R >1 Å), the molecular volume is described by a
vdW surface. Figure 2a shows the contour plot of the average
polarizability of the molecule as a function of the Cl radius
and inner dielectric. As with the sphere polarizability, the
radius has a strong impact on the average polarizability, and
the influence of the inner dielectric is significantly reduced
beyond a value of 10. The anisotropy, however, is more
affected by the dielectric constant and varies less rapidly and
over a larger range of radius and dielectric than the average
polarizability. The Cl2 example illustrates the need for high
dielectric compared to experimental values, and this is
especially true when a molecule is highly anisotropic. Figure
2b shows that for low values of the inner dielectric, the
dependence of the anisotropy on the radius diminishes.

Importantly, it is clear that the EPIC model does not have
the polarizability catastrophe problem associated with the
PID family of polarizable models. When two polarized
spheres start to overlap, the interaction between the induced
dipoles does not diverge. One reason for this is that the
induced polarization is spread over space, rather than being
concentrated at a point. Also, when two atoms approach each
other, their volumes and, hence, the total polarizability are
decreased. Hence, the atomic radii in the EPIC model play
a role somewhat similar to the Thole shielding factor used
in PID and DO models.

The Cl2 bond-parallel and -perpendicular polarizabilities
obtained by DFT are 25.4 and 43.6 au, respectively, leading
to an average polarizability of 31.4 au and an anisotropy of
18.2 au. Pairs of radius and dielectric that can reproduce the
DFT values and can be visually identified by plotting the
isolines of the fitness function as shown in Figure 2c.

F(R, ε))
2|R⊥ (R, ε)-R⊥

QM|+ |R|(R, ε)-R|
QM|

3Ravg
QM

Four local minima are identified (three are obvious from the
figure) from which two, located at (R ) 1.4, ε ) 11.5) and
(R ) 1.3, ε ) 20.0) produce an overall error less than 5%.
The existence of the multiple minima is due to the multi-
objective nature of the fitness function: the error surface has
minima where the isolines of ∼30 au in Figure 2a and the
isoline of ∼20 au in Figure 2b are close to each other,
simultaneously matching the DFT values. Higher minima
are found when only one of the anisotropy or the average
polarizability match the DFT values. For instance, at (R )
1.5, ε ) 7.0) the average value is matched but not the

anisotropy. Similar hypersurfaces have been found with PE
in a different context.37,58

Finally, it is interesting to note, as alluded to in the
previous section, that for Cl2 it is not possible to assign a
small sphere (<1 Å) to each atom, no matter how large the
dielectric, and reproduce the correct polarizability. This
clarifies the difference between the EPIC and the PID models.
Although they both serve the same purpose, the two models
do not present identical physical pictures. For instance,
shielding must be introduced explicitly in PID, whereas it is
intrinsic to the physics of the EPIC model.

5.2. Diatomics: Polarizability. Homonuclear diatomic
molecules constitute a difficult test for a polarizable model.
For example, the FQ model does not allow for bond-
perpendicular polarizability, which is typically half of the
bond-parallel polarizability. van Duijnen et al.14 have repa-
rameterized the PID-Thole model, and they obtained 22%
error on the average polarizabilities of H2, N2, and Cl2. Their
error in the anisotropy is significantly larger. More recently,
a special parametrization for homohalides with the PID-Thole
model gave errors of 9% and 82% on the average polariz-
ability and anisotropy of F2, respectively.13 In the case of
Cl2, the errors on the average polarizability and anisotropy
are 2% and 20%; finally, for Br2 the same authors found
0.8% and 13%. However, Birge20 assigned anisotropic
atomic polarizabilities and obtained the experimental values
for H2 and N2. These large errors of the models without
atomic anisotropy corrections have been attributed to the
difficulty of increasing the atomic induced dipole interaction.
Fitting our model to match B3LYP/aug-cc-pVTZ molecular
polarizabilities led to significantly smaller errors as shown
in Table 1. In the best case, we fit a different inner dielectric
and radius for each element. This is a good example of
overfitting since two parameters are used to reproduce two
polarizabilities. However, it is a way to verify that the
dielectric model is flexible enough to deal with the diatomics
without using atomic anisotropy parameters. Table 1 shows
the results for five diatomic molecules, and the reported errors
for the average polarizability and anisotropy are 0.1% and
0.3% for H2, 1.8% and 3.7% for N2, 0.5% and 1.5% for F2,
0.9% and 0.1% for Cl2, and 1.0% and 2.2% for Br2. These
results clearly show enough flexibility to account for both
average polarizability and anisotropy. The second fitting
scenario involved a single dielectric for all five molecules
and five atomic radii, fitting 6 parameters to 10 data points.
The optimal parameters give results still in relatively good
agreement with DFT with a maximum of 16% error made
in the case of F2 anisotropy. For both optimal parameter sets,
the radii and dielectrics are reported in Table 1 in parentheses.

These encouraging results on diatomics show that the EPIC
model can correctly account for polarizability on a minimal
group of two atoms. Therefore, we expect that the local
polarizability may be well represented in larger molecules.

5.3. Organic Data Sets: Typical PB Parameters. As an
initial check on how well typical radii and inner dielectric
used in PB applications could reproduce the molecular
polarizabilities, we first examined the set of parameters
obtained by Tan and Luo12 that lead to reasonable dipole
moments in different continuum external dielectrics. In their
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work, they not only fit the inner dielectric but also the atomic
charges. They use the PCM radii and obtained a best inner
dielectric of 4. This combination of parameters produces an
error of 52% in the average polarizability (eq 10) compared
to B3LYP (all molecules from Figure 3) and an error of 18%
(eq 9) in the anisotropy as outlined in Table 2. In both cases,
the standard deviations (STDEV) of the errors are large. The
other two sets of radii examined are those from CHARM2259

and Bondi.60 We applied four representative inner dielectrics:
2, 4, 8, and 16, spanning the range of dielectrics often
reported to be optimal. Table 2 shows very high errors for
all the combinations, the best being Bondi radii with an inner
dielectric of 4 which led to an average polarizability error
of 9% with a STDEV of 6% and an anisotropy error of 26%
with a STDEV of 15%. These particular parameters have a
bimodal error distribution producing smaller errors for
alkanes than for aromatics, which is consistent with other
findings (vide infra). Clearly, the parameters from previous
studies are not appropriate for the calculation of vacuum
molecular polarizabilities, and they do not accurately account
for the electronic polarization. When attempting to only
optimize the inner dielectric, while keeping the atomic radii
to their Bondi values, it was not possible to obtain small
errors on the anisotropy.

In the next sections, we present details about new
parametrizations that are in much better agreement with DFT
values. As outlined in Table 2, we reduced the error produced
by the best Bondi combination by a factor of 4 for both the
average polarizability and the anisotropy. The STDEV is also
greatly reduced allowing for more confidence and robustness
in the polarizability predictions.

5.4. Alkanes and Aromatics. Figure 4a,b summarizes the
results obtained with the best parameter set, fitted with two
inner dielectrics (P2E), for the 12 sets formed by the 6
classes: alkanes, aromatics, pyridones, pyrroles, furans, and
thiophenes. The optimal parameters with the atom-typing
scheme used to generate the molecular polarizabilities are
given in Table 3, along with Bondi radii.60 In Figure 4, the

comparisons are between the DFT polarizabilities and the
EPIC model. The errors are reported with histograms and
error bars corresponding to the average unsigned errors (eqs
9-11) and the corresponding STDEV indicating the range
of variation of the errors.

In Figure 4a, the error on the average polarizabilities is
less than 3% for all classes of the training sets and less than
1% for the thiophenes-t set, and the combined average error
is less than 2%. The corresponding error on the average
polarizabilities for the validation sets in Figure 4b is slightly
higher with a maximum of 3.2% for the pyrrole-v set; the
combined error is 2.4%.

While this low level of error obtained in the average
polarizability has also been observed with other polarizable
methods, the anisotropy of the polarizability is less tractable.
To capture anisotropy, previous models normally require the
use of directional atomic polarizabilities15,20,21 especially for
aromatics. In our training sets, as shown in Figure 4a, we
obtain a combined error for the anisotropy of 4%. The worst
set, pyridones-t, has an average error of only 7.1%. Although
this class is found in biologically active molecules, we could
not find published results from other empirical polarizable
models for molecular polarizability tensors. We believe that
this class might be particularly difficult due to variable
aromaticity and accounting for a range of chemical func-
tionalities with the same parameters (imidazolones, 2-pyri-
dones, 4-pyridones, etc.).

The anisotropy average error on the validation set in Figure
4b ranges from 2.5% for the alkanes-v up to 7.4% for the
aromatics-v. It is not surprising that the error is larger for
the validation sets than for the training sets. Overall, however,
when comparing the anisotropy error made on the combined
sets, it is not significantly higher: 5.3% for the validation
sets versus 4% for the training sets. On the other hand, the
STDEV is significantly higher in the validation set.

The aromatics class shows the highest anisotropy shift
from the training set to the validation set. Phenazine and
phenanthrene are responsible for two out of three large
discrepancies between B3LYP and EPIC. It is interesting to
note that when comparing B3LYP average polarizability and
anisotropy to experiment, the errors are 11% and 30% for
phenazine and 17% and 20% for anthracene. The same errors,
when comparing our model and experiment, are 5% and 15%
for phenazine and 1.7% and 1.4% for anthracene. The EPIC
model is thus more accurate for these molecules, which can
be partly explained by the known size-consistency defect of
DFT for oligocenes (benzene, naphthalene, anthracene,
tetracene, etc.) that are usually too anisotropic.55 In general,
DFT methods have problems reproducing the polarizability
of long delocalized molecules, and this has been attributed
to deficiency of the currently used functionals to account
for a self-interaction correction.61 It is therefore possible that
our model, fit on smaller molecules, tends to produce better
behavior on these large delocalized molecules. Another
implication is that large molecules should not be used for
the training of a polarizable model to fit DFT polarizabilities.
Figure 5a shows that in fact the correlation between the
polarizability components of the entire set of molecules of
Figure 3 is excellent up to 150 au. Part of the discrepancy

Table 2. Unsigned Average Errors for All Molecules in
Figure 3, Relative to B3LYP/aug-cc-pVTZ, of Average
Polarizability and Anisotropy Obtained with Various
Parameters Typically Used in Pb Applications

radii εin

δavg

(%)
STDEV

(%)
δaniso

(%)
STDEV

(%)

Tan and Luoa 4 52 20 18 10

CHARM22b 2 40 13 47 23
4 26 26 28 13
8 84 40 17 26

16 129 50 54 44

Bondic 2 51 6 47 23
4 9 6 26 15
8 51 15 14 16

16 91 17 52 29

EPIC/P2Ed 4.98, 14.55 2 2 5 4
EPIC/P1Ed 11.7 2 2 6 6

a Reference 12. b Reference 59. c Bondi radii from reference 60.
The Hydrogen radius is set to 1.1 Å following Rowland and
Taylor’s recommendations.71 d EPIC used with parameters fit in
this work as reported in Table 3.
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might be attributable to a different behavior of DFT methods
in that range of polarizabilities. In this respect, optimized
effective potential (OEP) and time-dependent DFT methods
have shown significant improvement,62-64 but these are still
considerably more resources-intensive. The third worst
anisotropy discrepancy between B3LYP and EPIC of this
aromatics-v set comes from the cycl[3.3.3]azine molecule
which has already shown differences with regular polyacenes
in terms of excited states.65 The transferability for that
particular molecule is good, all things considered, with an
average polarizability error of 8.6% and anisotropy error of
12.8%.

The pyridones-v set is the most challenging with the highly
functionalized purine derivates (purine, hypoxanthine, and
uric acid) and the substituted pyridones with five-membered
heteroaromatic rings. For example, the geometry optimized
1-(2-thienyl)-pyridin-4-one shows an angle of 58° between
the two aromatic rings as opposed to the 1-(oxadiazol)-
imidazolone that has the two connected rings coplanar and
a fully delocalized electron π system. This data set is similar
to the chemical functionalization of drug-like molecules.

The average angles between the eigenvector of the
polarizability components of B3LYP and that of the EPIC
are less than 5.5° in all sets, although in some molecules

Table 3. Optimized Radii (Å) and Inner Dielectrics with Sensitivitya Accounting for All Molecule Sets (Figure 3): Parameter
Sets P2E and P1E

atom type description optimal value (P2E) sensitivity optimal value (P1E) sensitivity Bondi radiib

alkanes
C alkyl 1.39 0.04 1.13 0.03 1.70
H bond on an alkyl C 0.99 0.02 0.78 0.05 1.20
Dielectric alkanes 4.98 0.27 11.70 1.18

aromatics
C aromatic 1.32 0.05 1.30 0.04 1.70
H bonded to aromatic C or N 0.64 0.09 0.78 0.05 1.20
N aromatic 1.06 0.16 1.10 0.14 1.55
O furan-like aromatic 0.74 0.23 0.75 0.27 1.52
O in pyridone carbonyl 0.95 0.25 1.03 0.16 1.52
S thiophene-like 1.50 0.06 1.58 0.05 1.80
dielectric aromatics 14.56 1.50 11.70 1.18

a Smallest parameter variation required to produce a 1% additional error in the fitting function (see Method section for details).
b Reference 60.

Figure 4. Comparison between B3LYP/aug-cc-pVTZ polarizabilities and EPIC models P2E and P1E for all molecules from
Figure 3. The averaged relative error on average polarizability (eq 10), anisotropy (eq 9), and the deviation angle of the eigenvectors
(eq 11) are shown together with the corresponding STDEV reported as error bars. The results for the 2-dielectric fit (P2E)
training sets (a) and validation sets (b) show small errors in the average polarizability and relatively small errors in the anisotropy.
The results for the 1-dielectric fit (P1E) training sets (c) and the validation sets (d) show larger errors in the alkanes anisotropy
and generally larger errors than the P2E parameters (shown under combined P2E). Combined errors of the training and validation
sets are similar.
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the angles can be as large as 23°, that is, for thiazole. For
the pyridones-t and pyridones-v sets, the angular diffences
remain surprisingly small.

Finally, Table 4 shows that, compared to experimental
values, the parametrized EPIC method performs comparably
to B3LYP against the subset of 25 molecules for which
experimental data is available. Indeed, EPIC produces a δavg

of 3.9% with experiment compared to 4.1% for B3LYP. It
also gives a δaniso of 9.0% with experiment compared to
10.5% in the case of B3LYP. The STDEV of the errors from
B3LYP match EPIC values. The discrepancy between
B3LYP and EPIC calculated for the molecules of Figure 3
is smaller leading to a δavg of 1.9% and a δaniso of 4.6%. The
level of error compared to experiment obtained with both
B3LYP and EPIC is not necessarily beyond experimental
uncertainty.

5.5. Conformational Dependency of Polarizability. Al-
though we avoided comparing the polarizability of flexible
molecules to experimental data, it is obvious that a good
empirical method should account for the conformational
dependency of the polarizability, the anisotropy, and the
orientation of the polarizability tensor eigenvectors. In
addition to the deliberate choice of a wide range of 3D
diversity in our molecular sets, we examined the case of
n-octane, the most flexible molecule of the sets. Taking 13
diverse B3LYP geometry optimized conformers of n-octane,
we computed the polarizability, anisotropy, and the eigen-
vectors using the P2E parameters. The EPIC method gives
average polarizability error and anisotropy error of 1.9% and
5.8%, respectively. Figure 5b shows a correlation graph

between B3LYP polarizability components and our model
(Rxx, Ryy, Rzz). The correlation is perfectly linear as shown
by a linear regression leading to an R2 of 0.997 although
the slope of the regression is 1.21, consistent with the average
errors outlined above. Moreover, in Figure 5a, we clearly
see that correlation of the polarizability components for all
the molecules of Figure 3 is excellent with a slope of 1 and
an R2 of 0.990. This result leads to the conclusion that our
model is at least consistently making the same errors for
n-octane conformers compared to B3LYP. Finally, the
orientations of the polarizability components differ by 0.97°
with a maximum value of 3.7°; this is in spite of the broken
symmetry in the gauche octane conformers.

6. Discussion

6.1. Transferability. Shanker and Applequist,15 with a
variation of the PID model, studied seven nitrogen hetero-
cyclic molecules that we also included in our sets: pyridine,
pyrimidine, pyrazine, 9H-purine, quinoxaline, quinoline, and
phenazine. Using 12 parameters including directional atomic
polarizabilities, they show an average polarizability (eq 10)
and anisotropy errors (eq 9) of 10% and 12%, respectively;66

the parametrized EPIC (Table 3) produces correspondingly
3% and 5% error with only 4 parameters; we feel that the
reduced requirement for fitted parameters is due to a better
physical model. Similar comparisons can be made to the
work of Miller21 where it is reported that 6 parameters for
benzene, 9 parameters for pyridine, 9 parameters for
naphthalene, and 12 parameters for quinoline are needed to
obtain both the average polarizability and the anisotropy.
With the EPIC method, again the same 4 parameters do for
all.

Recently, Williams and Stone67 have parametrized a
polarizable model on n-propane, n-butane, n-pentane, and
n-hexane in both their trans and gauche conformations. With
their simplest Ctg model, they use 10 atomic polarizability
parameters to fit the polarizability tensors to B3LYP values.
They obtain a very small error on both the average polar-
izability and the anisotropy of 1.16% and 2.37%, respec-
tively. Making the same comparison with our model, we
obtain 1.7% average polarizability error and 3.99% anisot-

Figure 5. Correlation between B3LYP/aug-cc-pVTZ polarizability components and the EPIC model P2E. In (a), the polarizability
components for all sets of Figure 3 are correlated and the (10% error lines are illustrated. The linear regression shows excellent
agreement, especially for polarizabilities smaller than 150 au. In (b), 13 stable conformers of n-octane are examined. The all
trans conformation polarizabilities are identified with circles. The average polarizability error on the 13 conformers is 1.9%, and
the anisotropy error is 5.8%. A linear regression gives an R2 of 0.997, a slope of 1.21, and an ordinate at the origin of -19.5.
This means that the EPIC model P2E overestimates the polarizability of n-octane consistently through all conformers.

Table 4. Average Errors and Standard Dveiations (stdev)
against Experimenta for All Molecules in Figure 3

method δavg (%) stdev (%) δaniso (%) stdev (%)

Tan and Luob 58.4 19.8 13.6 9.4
Bondic 8.3 6.2 22.4 13.5
EPIC/P2Ed 3.9 4.1 9.0 9.5
EPIC/P1Ed 3.8 3.1 7.3 6.4
B3LYP 4.1 4.1 10.5 9.9

a Twenty-five experimental average polarizabilities and 18
anisotropy data. Details given in Supporting Information.
b Reference 12. c Bondi radii and εin ) 4. d EPIC used with
parameters fit in this work reported in Table 3.
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ropy error. Although the error is slightly larger with our EPIC
model, this is obtained with only three parameters also
producing similar levels of errors in our extended set of
alkanes. Furthermore, the level of errors reported by Williams
et al. and our studies are all within the accuracy of B3LYP
method.

The small number of parameters (cf. Table 3) needed to
fit all the aromatic compounds of Figure 3 is a good
indication of the transferability and the generality of the
method for heteroaromatic compounds. For example, the
same nitrogen radius could simultaneously fit pyridine,
pyridone, pyrrole, and even branched nitrogen. In the case
of alkanes, we have examined most characteristic shapes.
Moreover, the training and validation sets produce similar
errors; thus, the expected performance of our method in the
general case can be approximated by the errors on the
validation sets.

Overall, we obtain the same level of error as the best PID
methods parametrized with anisotropic atomic polarizabilities
and about threefold more parameters. Although the number
of parameters is not an issue for a small and homogeneous
set of molecules, it would become a serious barrier for further
development of a model applicable to the immense functional
group complexity of drug-like molecules, one of the main
goals of this ongoing effort.

6.2. Inner Dielectrics. The choice of fitting two inner
dielectrics, one for the alkanes and one for the heteroaro-
matics, makes the calculation of new mixed molecules such
as t-butylbenzene not possible unless we have a way to
switch from a high dielectric (benzene) to a lower dielectric
(t-butyl) intramolecularly. Overall, the value of multiple
dielectrics, based on chemical constituency, seems proven
as well as being physically reasonable. This is a potentially
useful strategy in the development of a future general
polarizability model. However, simultaneously fitting the
polarizabilities of all the compounds from Figure 3 with a
single dielectric still gives reasonable results. Table 3 reports
the values of the optimal parameters used to produce the
data of Figure 4c,d. We fit one radius per element except
for oxygen, which is split into furan-like and pyridone-like,
and for carbon which is split into alkane and aromatic. We
first had two hydrogen radii, but there was no significant
cost to merge them into one single radius. The results, shown
in Figure 4c,d, when compared with those of Figure 4a,b,
show a significant increase in the errors on the alkanes-t and
alkanes-v sets although the errors on the heteroaromatics
classes remain similarly small. It is nevertheless surprising
that the level of error remains low when describing the
electronic dielectric with a single constant when, in principle,
the electronic local polarization should vary intramolecularly
as suggested by Oxtoby.68

Finally, it is reassuring that the best radii for both reported
parametrizations follow the chemical sense of atomic size.
The remarkably reduced size of the optimal radii compared
to conventional vdW radii (like Bondi) is worth few
comments. First, the EPIC radii explain a different physics
than conventional vdW radii: the latter relate to the repulsive
forces that keep molecules apart whereas the former relate
to the electronic response inside the molecule. There is no

reason a priori that they would be the same. Furthermore,
the high dielectric and the small radii are necessary to
modulate the molecular shape so as to correctly fit the
polarizability anisotropy. For example, a benzene molecule
is flattened when the carbon radii are reduced, and thus the
out-of-the-plane polarizable volume is reduced while the in-
the-plane length is more or less conserved, increasing the
anisotropy. With smaller radii reducing the molecular volume
for dielectric response, a higher dielectric value is then
needed to conserve the molecular polarizability (cf. eq 3).

6.3. Link to the Optical Dielectric Constants. Intramo-
lecular dielectric constants in the context of PE or PB can
adopt many values depending on the system and the
phenomena involved35,37,58,69 and have been attributed values
from 1 to 20. The optimal inner dielectric of solutes in
continuum solvent free energy and in ligand-protein binding
calculations do not agree.37 Here, we attempt to position our
work in this jungle of dielectrics.

We are concerned uniquely with the electronic polarization
component. None of the optimal dielectric constants fitted
in this work match the experimental optical dielectric
constants calculated as the square of the refractive index,
which normally have values between 1.2 and 4.0. We partly
justify the need for larger dielectrics in section 6.2, but there
are other factors that should also be considered. It is
important to realize that the link between the molecular
polarizability and the macroscopic optical dielectric constant
is given by the Lorentz-Lorenz relation shown in eq 12
where N is the number of molecules in the volume V and ε
is the macroscopic dielectric when the light frequency is high
compare to the dipolar or ionic relaxation time (ε0 is the
vacuum permittivity constant).

Ravg )
3ε0V

N [ε- 1
ε+ 2] (12)

In the Lorentz-Lorenz equation a molecule is ap-
proximated as a spherical dielectric with an effective
molecular volume given by the ratio of the macroscopic
space occupied by one molecule. However, from our
atomistic perspective the effective volume of a molecule is
defined by the electronic density and does not include the
empty space between molecules effectively included in eq
12. Hence, in the EPIC model that we parametrize, the
average polarizability is the link to the refractive index and
not the inner dielectric. The main reason for this is the
inconsistency between the atomistic and the macroscopic
definitions of the molecular volume. This raises the point
that using experimental optical dielectrics assigned to the
solute interior in continuum solvent approaches should be
further questioned.

Finally, we believe that a more accurate treatment of solute
polarizability in the context of continuum solvent could
improve the quality of continuum dielectric methods. Obvi-
ously the radii and dielectrics obtained in the present work
cannot be used in the condensed phase directly; conventional
vdW radii should be used as the basis for intermolecular
contacts (such as hydrogen bonding) and the solvent bound-
ary. Therefore, to simultaneously include the solute electronic
response and the correct solvent response, there is a dielectric
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region, which still needs to be characterized, in between our
small “polarizability” radii and the vdW radii. Although out
of scope for the present article, we are in the process of
extending the use of our findings in this direction. Once done,
one could think of obtaining a polarizable model close to
the “polarizable continuum model” (PCM) of Tomasi et al.70

in which the electronic density would be simply replaced
by an “electronic volume” defined with radii and a dielectric
constant.

7. Conclusion

In this work, the simple physical picture afforded by a
continuum dielectric representation has been used to ac-
curately model molecular dipole polarizability tensors. The
molecular inner dielectric in the EPIC model accounts for
the electronic polarization. To tackle gas-phase polarizabili-
ties, we capitalized on existing finite difference Poisson-
Boltzmann code to calculate the induced dipole moment of
a molecule in vacuum in the presence of a uniform electric
field. As opposed to the usual use of PE or PB in continuum
models, the molecule is a region of higher dielectric and the
external dielectric is set to the vacuum value. The calculations
are fast and resource-sparing, with equivalently good results
up to a grid spacing of 0.5 Å, even though a discrete vdW
dielectric boundary is used.

This EPIC model of molecular polarizability possesses
some important differences with other approximations such
as the point inducible dipole, Drude oscillator, and the
fluctuating charge models. It is based on a local differential
equation solved on a grid, which brings to the same level of
complexity the polarizability and Coulombic electrostatic
components. Importantly, EPIC avoids the polarizability
catastrophe found in the other PID-based models. Further-
more, it allows, in principle, for a more detailed response to
the electric field than the PID or the FQ models based on
the fact that the response emerges from the electric field lines
across the molecule surface instead of evaluations only at
atomic nuclear positions.

This study involved the parametrization of atomic radii,
used in the definition of the vdW dielectric boundary, and
the molecular inner dielectric. Previous values of these
parameters found in the literature are unacceptably poor at
approximating molecular polarizability, especially the ani-
sotropy. We attribute this discrepancy to the fact that previous
models simultaneously optimize different kinds of interde-
pendent parameters fitting to a complex energy property
instead of focusing on solute polarization. Indeed, the
previous purpose of using dielectric continuum was in the
context of continuum solvent, often completely neglecting
the solute response per se.

To test the newly proposed method, we selected difficult
chemical classes: the homonuclear diatomics, a wide variety
of heteroaromatics, and a diverse set of alkanes. A total of
5 diatomics plus 48 molecules are part of the training sets,
subdivided into 6 chemical classes to which we add 45
molecules for validation purposes. In previous models, the
polarizabilities of these classes of compounds were correctly
calculated only when anisotropic atomic polarizabilities were
employed (or auxiliary sites in the case of FQ). Already,

with about threefold less parameters than other studies with
different models, we have obtained averaged polarizability
errors smaller than 5% and averaged anisotropy errors less
than 8% considering all sets. The polarizability components
calculated with the EPIC/P2E model correlates very well with
B3LYP/aug-cc-pVTZ with an R2 of 0.990 and a slope of
0.999. The orientations of the polarizability eigenvectors are
also well reproduced. The flexibility of the model even
allowed the calculation of an accurate anisotropy for F2

without resorting to auxiliary sites or anisotropic parameters.
We also found that the EPIC model was able to consistently
calculate the molecular polarizabilities on 13 different
conformers of n-octane. Because of the success of parsimo-
nious parametrization of the EPIC model on difficult chemi-
cal classes, we believe that the parametrization can be
generalized for all organic chemistry with adequate accuracy.
In doing this, we found that intramolecularly varying
dielectric constant might be needed to account for the
molecular anisotropy.

Overall, this study exemplified that a phenomenon as
complex as electronic polarization can be accurately modeled
with a simple dielectric continuum model. The principal
implications of these findings are in the areas of Poisson-
Boltzmann methods and in polarizable force field develop-
ment. However, the level of accuracy obtained might also
have impact beyond our initial consideration, for example,
in the field of spectroscopy.
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réseau québécois de calcul haute performance (RQCHP). The
authors are grateful to OpenEye Inc. for free academic
licenses. R.I.I. acknowledges financial support from the
Natural Sciences and Engineering Research Council of
Canada (NSERC). J.-F.T. is supported by NSERC through
a Canada graduate scholarship (CGS D) and by Merck &
Co. through the MRL Doctoral Program I. B.R. is supported
by NIH Grant GM072558.

Supporting Information Available: DFT, experimen-
tal, and EPIC polarizabilities are available for all molecules
examined. The optimized coordinates of all molecules are
also included. Further discussion on grid spacing is included.
This material is available free of charge via the Internet at
http://pubs.acs.org.

References

(1) Lane, N. F. ReV. Mod. Phys. 1980, 52, 29–119.

(2) Kirkwood, J. G. J. Chem. Phys. 1937, 5, 479–491.

(3) Wagnière, G. H. Linear and Nonlinear Optical Properties
of Molecules, VCH ed.; Helvetica Chimica Acta Publishers:
Weinheim, 1993.

(4) Maroulis, G.; Hohm, U. Phys. ReV. A 2007, 76, 032504.

(5) Vela, A.; Gazquez, J. L. J. Am. Chem. Soc. 1990, 112, 1490–
1492.

(6) Nagle, J. K. J. Am. Chem. Soc. 1990, 112, 4741–4747.

Polarizabilities from Continuum Electrostatics J. Chem. Theory Comput., Vol. 4, No. 9, 2008 1491



(7) Allen, T. W.; Andersen, O. S.; Roux, B. Proc. Natl. Acad.
Sci. U.S.A. 2004, 101, 117–122.

(8) Wick, C. D.; Kuo, I. F. W.; Mundy, C. J.; Dang, L. X.
J. Chem. Theory Comput. 2007, 3, 2002–2010.

(9) Guo, H.; Gresh, N.; Roques, B. P.; Salahub, D. R. J. Phys.
Chem. B 2000, 104, 9746–9754.

(10) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J.
AdV. Drug DeliVery ReV. 1997, 23, 3–25.

(11) Sharp, K.; Jean-Charles, A.; Honig, B. J. Phys. Chem. 1992,
96, 3822–3828.

(12) Tan, Y. H.; Luo, R. J. Chem. Phys. 2007, 126, 094103.

(13) Elking, D.; Darden, T.; Woods, R. J. J. Comput. Chem. 2007,
28, 1261–1274.

(14) van Duijnen, P. T.; Swart, M. J. Phys. Chem. A 1998, 102,
2399–2407.

(15) Shanker, B.; Applequist, J. J. Phys. Chem. 1996, 100, 3879–
3881.

(16) Silberstein, L. Philos. Mag. 1917, 33, 521–533.

(17) Bode, K. A.; Applequist, J. J. Phys. Chem. 1996, 100, 17820–
17824.

(18) Applequist, J. J. Phys. Chem. 1993, 97, 6016–6023.

(19) Applequist, J.; Carl, J. R.; Fung, K. K. J. Am. Chem. Soc.
1972, 94, 2952–2960.

(20) Birge, R. R. J. Chem. Phys. 1980, 72, 5312–5319.

(21) Miller, K. J. J. Am. Chem. Soc. 1990, 112, 8543–8551.

(22) Thole, B. T. Chem. Phys. 1981, 59, 341–350.

(23) Warshel, A.; Levitt, M. J. Mol. Biol. 1976, 103, 227–249.

(24) Cieplak, P.; Kollman, P. A.; Lybrand, T. J. Chem. Phys. 1990,
92, 6755–6760.

(25) Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.
J. Phys. Chem. A 2004, 108, 621–627.

(26) Noskov, S. Y.; Lamoureux, G.; Roux, B. J. Phys. Chem. B
2005, 109, 6705–6713.

(27) Lamoureux, G.; Roux, B. J. Chem. Phys. 2003, 119, 3025–
3039.

(28) Gasteiger, J.; Marsili, M. Tetrahedron Lett. 1978, 3181–3184.

(29) Rick, S. W.; Stuart, S. J.; Berne, B. J. J. Chem. Phys. 1994,
101, 6141–6156.

(30) Rappe, A. K.; Goddard, W. A. J. Phys. Chem. 1991, 95,
3358–3363.

(31) Chelli, R.; Procacci, P.; Righini, R.; Califano, S. J. Chem.
Phys. 1999, 111, 8569–8575.

(32) Harder, E.; Anisimov, V. M.; Whitfield, T.; MacKerell, A. D.;
Roux, B. J. Phys. Chem. B 2007, 112, 3509–3521.

(33) Honig, B.; Nicholls, A. Science 1995, 268, 1144–1149.

(34) Roux, B.; MacKinnon, R. Science 1999, 285, 100–102.

(35) Antosiewicz, J.; McCammon, J. A.; Gilson, M. K. J. Mol.
Biol. 1994, 238, 415–436.

(36) Simonson, T.; Archontis, G.; Karplus, M. J. Phys. Chem. B
1999, 103, 6142–6156.

(37) Naim, M.; Bhat, S.; Rankin, K. N.; Dennis, S.; Chowdhury,
S. F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C. I.; Jakalian,
A.; Purisima, E. O. J. Chem. Inf. Model. 2007, 47, 122–
133.

(38) Fogolari, F.; Brigo, A.; Molinari, H. J. Mol. Recognit. 2002,
15, 377–392.

(39) David, J. G. Introduction to Electrodynamics, 3rd ed.;
Prentice-Hall, Inc.: Upper Saddle River, NJ, 1999.

(40) Nicholls, A. Presented at The 233rd ACS National Meeting,
Chicago, IL, March 25-29, 2007.

(41) Schropp, B.; Tavan, P. J. Phys. Chem. B 2008, 112, 6233–
6240.

(42) Weininger, D. J. Chem. Inf. Model. 1990, 30, 237–243.

(43) Weininger, D.; Weininger, A.; Weininger, J. L. J. Chem. Inf.
Model. 1989, 29, 97–101.

(44) Weininger, D. J. Chem. Inf. Model. 1988, 28, 31–36.

(45) OMEGA, version 2.2.1; OpenEye Scientific Software, Inc.:
Santa Fe, NM, 2007.

(46) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N. ; Burant, J. C.; Millam, J. M.;
Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi,
M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.;
Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Strat-
mann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli,
C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich,
S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.;
Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A.; Gaussian 03, revision C02; Gaussian Inc.: Wallingford,
CT, 2004.

(47) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

(48) Becke, A. D. J. Chem. Phys. 1993, 98, 1372–1377.

(49) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J.
J. Phys. Chem. 1994, 98, 11623–11627.

(50) Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984,
80, 3265–3269.

(51) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V.
J. Comput. Chem. 1983, 4, 294–301.

(52) Rice, J. E.; Handy, N. C. J. Chem. Phys. 1991, 94, 4959–
4971.

(53) Woon, D. E.; Dunning, J. J. Chem. Phys. 1993, 98, 1358–
1371.

(54) Kendall, R. A.; Dunning, J.; Harrison, R. J. J. Chem. Phys.
1992, 96, 6796–6806.

(55) Hammond, J. R.; Kowalski, K.; deJong, W. A. J. Chem. Phys.
2007, 127, 144105.

(56) Grant, J. A.; Pickup, B. T.; Nicholls, A. J. Comput. Chem.
2001, 22, 608–640.

(57) Kassimi, N. E. B.; Lin, Z. J. J. Phys. Chem. A 1998, 102,
9906–9911.

(58) Rankin, K. N.; Sulea, T.; Purisima, E. O. J. Comput. Chem.
2003, 24, 954–962.

(59) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.;
Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.;

1492 J. Chem. Theory Comput., Vol. 4, No. 9, 2008 Truchon et al.



Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau,
F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.;
Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith,
J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-
Kuczera, J.; Yin, D.; Karplus, M. J. Phys. Chem. B 1998,
102, 3586–3616.

(60) Bondi, A. J. Phys. Chem. 1964, 68, 441–451.

(61) Sekino, H.; Maeda, Y.; Kamiya, M.; Hirao, K. J. Chem. Phys.
2007, 126, 014107.

(62) van Faassen, M.; de Boeij, P. L. J. Chem. Phys. 2004, 120,
8353–8363.

(63) van Faassen, M.; Jensen, L.; Berger, J. A.; de Boeij, P. L.
Chem. Phys. Lett. 2004, 395, 274–278.

(64) van Faassen, M. Int. J. Mod. Phys. B 2006, 20, 3419–3463.

(65) Leupin, W.; Berens, S. J.; Magde, D.; Wirz, J. J. Phys. Chem.
1984, 88, 1376–1379.

(66) For purine and quinoxaline, the B3LYP/aug-cc-pVTZ
components from this work are used for the comparison
since they match the experimental average polarizability
reported by Shanker et al. Averaged experimental compo-
nents reported by Shanker et al. are used for pyrimidine
and pyrazine.

(67) Williams, G. J.; Stone, A. J. Mol. Phys. 2004, 102, 985–991.

(68) Oxtoby, D. W. J. Chem. Phys. 1980, 72, 5171–5176.

(69) Elcock, A. H.; Sept, D.; McCammon, J. A. J. Phys. Chem.
B 2001, 105, 1504–1518.

(70) Miertus, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55,
117–129.

(71) Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100,
7384–7391.

CT800123C

Polarizabilities from Continuum Electrostatics J. Chem. Theory Comput., Vol. 4, No. 9, 2008 1493



Karplus Equation for 3JHH Spin-Spin Couplings with
Unusual 3J(180°) < 3J(0°) Relationship
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Abstract: Vicinal 3JHH coupling constants for monosubstituted ethane molecules present the
unusual relationship 3JHH (180°) < 3JHH (0°) when the substituent contains bonding and
antibonding orbitals with strong hyperconjugative interactions involving bond and antibond orbitals
of the ethane fragment. This anomalous behavior is studied as a function of the substituent
rotation for three model systems (propanal, thiopropanal, and 1-butene) at the B3LYP/TZVP
level. The consistency of this level of theory to study this problem is previously established
using different ab initio methods and larger basis sets. The origin of the unusual 3JHH(180°) -
3JHH(0°) relationship is attributed to simultaneous σ/π hyperconjugative interactions σCRsHR f

π*CcdX, and σCRsC� f π*CcdX. These interactions depend on the substituent rotation and their
effects are different for 3JHH(180°) than for 3JHH(0°). The modelization carried out shows an
increase of those effects as the substituent changes from weaker (CHdCH2) to stronger (CHdS)
electron acceptor π*CdX.

1. Introduction

Vicinal NMR coupling constants were used extensively as
stereochemical probes since Karplus pioneering works.1,2

During the past decade, there was a renewed interest in
vicinal spin-spin coupling constants (SSCC). Using these
couplings as constraints in NMR structure refinement of
proteins provides an important tool for increasing the
definition of the peptide backbone and side chain conforma-
tions.3

In a previous work,4 a valine dipeptide model was used,
within the DFT framework, to obtain Karplus coefficients
for 3JXY SSCCs whose X-C-C-Y dihedral angles are
related to the dipeptide �1 angle. It is recalled that vicinal
SSCCs can be represented by a Fourier series that reduces

to the usual Karplus equation1 if the SSCC asymmetry
around φ ) 180° and the higher cosine terms are neglected

3JXY(�) ) C0+C1cos(�) + C2cos(2�) (1)

Theoretically obtained SSCCs were compared with those
inferred experimentally and, in general, they show a good
agreement between them.4 The largest differences were
observed for �1 ) 0°, where theoretical values were
significantly larger than those obtained from empirical
Karplus equations. Such theoretical couplings lead to an
unusual positive coefficient C1, eq 1, which can easily be
related to the difference 3JXY(180°) - 3JXY(0°) ) -2C1 with
3JXY(180°) < 3JXY(0°).5 In the current literature, there are
some experimental reports of positive C1 coefficients. For
instance, Chou et al.,6 Lindorff-Larsen et al.,7 and Juranić
et al.8 reported empirical positive C1 coefficients for 3JNCγ

in protein side chains. Positive C1 coefficients were theoreti-
cally obtained by Case et al.9 in valine, and by Chou et al.6

in valine, threonine, and isoleucine. Also, C1 > 0 values were
reported for 3JCH in purine nucleotides by Munzarová et al.10

* Corresponding author e-mail: garcia.delavega@uam.es.
† Universidad de Buenos Aires and CONICET.
‡ Universidad de la Habana.
§ Universidad Autónoma de Madrid.

J. Chem. Theory Comput. 2008, 4, 1494–15001494

10.1021/ct800145h CCC: $40.75  2008 American Chemical Society
Published on Web 08/14/2008



All cases mentioned above in which C1 > 0 present a
molecular fragment M bonded to the coupling pathway of
the 3JHH SSCC. This fragment M contains bonding and
antibonding orbitals that can undergo strong hyperconjugative
interactions with the coupling pathway fragment containing
the coupling nuclei X-C-C-Y (X, Y ) H, H; C, H; N, H;
or N, C). In every case, the Fermi contact (FC) contribution
determines the C1 sign of the respective Karplus curves.
Therefore, when intending to rationalize these facts, it is of
primordial importance to pay attention to the transmission
mechanism of the FC term.

The FC interaction originates when the electron density
probability at the site of the coupling nuclei is not null.
Several features of the FC transmission, including its angular
dependence when the coupling nuclei are three or more bonds
apart, have been well-known for many years.11 In recent
years, a deeper insight into how the FC term is transmitted
through the electronic molecular structure was achieved,12,13

and now it is known that its transmission is closely associated
to the Fermi correlation, i.e., the “same-spin electron pair
density”, usually known as the “Fermi hole density”. This
indicates that departures from the classical Lewis structures
by delocalization interactions should favor the transmission
of long-range SSCC. Similarly, departures from the Lewis
structures could affect notably all types of SSCCs dominated
by the FC term. For this reason, in this work, special attention
will be paid to departures from the Lewis structures. At
present, the most frequently used approach to study these
departures from the Lewis scheme is the natural bond orbitals
(NBO) method of Weinhold et al.,14 which gives a descrip-
tion of them and provides quantitative estimations of electron
delocalization interactions. Usually, these delocalization
interactions are classified as conjugative and hyperconjuga-
tive interactions.

In recent works, it was shown that σ-hyperconjugative
interactions play a key role in transmitting long-range
SSCCs in strained saturated compounds.15 Also, it was
observed that hyperconjugative interactions affect strongly
one-,16 two-,17 and three-bond18 SSCCs. Recently, it was
reported19 that strong hyperconjugative interactions be-
tween bonding and antibonding orbitals are relevant to
the three bond contributions to 3,4JCH and those related to
the carbonyl group in norbornanones, which can affect
seriously both the three- and four-bond contributions.

In a previous work,4 we demonstrated that the main
contribution to the inversion of C1 coefficient for 3JHRH�

in aminoacids is the CdO group, whereas the NH2 group
has a weak contribution. In this work, an interpretation
of the “anomalous” behavior of the Karplus type eq 1 for
3JHH with C1 > 0 is sought in terms of the molecular
electronic structure. We select the propanal (Figure 1) as
a simplified model to study the relationship between
hyperconjugation interactions and coupling constants. Two
additional models, thiopropanal and 1-butene (Figure 1)
have been used to support the conclusions obtained in the

propanal and to analyze the effect of different substituents
(M ) CHdS and CHdCH2).

2. Computational Details

Two kinds of geometries have been used in this paper.
Initially, standard geometries20 and tetrahedral angles were
used for propanal to test the results of different methods and
basis sets. Next, the geometries of propanal, thiopropanal
and 1-butene were optimized at B3LYP/6-31G** level of
theory which, is considered sufficiently accurate for the
present purpose.4,21 The geometries for the staggered (φ )
180°) and eclipsed (φ ) 0°) conformers were calculated
while the dihedral angle θ was varied in 30° steps from 0 to
330°. All degrees of freedom, except those of φ ) 0° (in
the eclipsed conformer) and θ, were optimized.

The 24 standard or partially optimized structures, 12 for
3JHH(180°) and 12 for 3JHH(0°), were used to calculate the
four contributions to the 3JHH: Fermi contact, spin dipolar
(SD), paramagnetic spin-orbital (PSO) and diamagnetic
spin-orbital (DSO). To test the quality of the results, we
used the standard geometries to calculate the coupling
constants of propanal with the following methods and basis
set: B3LYP/TZVP, B3LYP/EPR-III, B3LYP/BS2, B3LYP/
aug-cc-pVTZ-J, SOPPA/EPR-III, and CCSD(SOPPA)/EPR-
III. The geometries partially optimized were used to calculate
the coupling constants in propanal, thiopropanal and 1-butene
at the B3LYP/TZVP level. In all studied cases, the FC term
is by far the dominating one as can be appreciated with these
examples for propanal (θ dihedral angle ) 180°), 3JHH(180°)
) 14.44 (FC ) 15.11, SD ) 0.02, PSO ) 2.20, DSO )
-2.89), and 3JHH(0°) ) 13.36 (FC ) 13.07, SD ) 0.21, PSO
) -0.18, DSO ) 0.26), calculated at the B3LYP/TZVP
level. NBO calculations have been performed at this same
level of theory on those partial geometry optimizations. At
this point, it is interesting to note that although individual
hyperconjugative interactions depend on the basis set used
to perform their calculations, trends of their angular depend-
ences do not.

DFT calculations were performed with Gaussian03 soft-
ware package,22 SOPPA and CCSD(SOPPA) calculations
were carried out with Dalton Software.23 NBO 3.124 included
in the Gaussian package22 was used for the NBO calculations.

3. Results and Discussion

From the above considerations, it is reasonable to formulate
a hypothesis connecting the peculiar features of 3JHH in
Karplus-type equations satisfying the condition 3JHH(180°)
< 3JHH(0°) and hyperconjugative interactions taking place
between bonding orbitals, or lone-pairs and antibonding

Figure 1. Propanal, thiopropanal, and 1-butene models.
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orbitals of the molecular fragment M and those belonging
to the 3JHH coupling pathway. In this way, propanal is taken
as a model compound to elaborate a hypothesis about the
influence of hyperconjugative interactions connecting the
ethyl moiety with the carbonyl group (M fragment).

On the basis of the known11 σ/π transmission of long-
range homoallylic 5JHH in 2-butene, Figure 2, it can be
expected that, for instance, the 3JHaHc SSCCs in propanal
model of Figure 1 can be transmitted, in part, through the
carbonyl π-electronic system by the simultaneous σ/π
hyperconjugative interactions σCRsC� f π*CdO and σCRsHa

f π*CdO. It should be noted the close analogy between this
assumption and the homoallylic coupling pathway shown in
Figure 2. Any of these σCRsC�f π*CdO and σCRsHaf π*CdO

interactions is zero whenever either the σCRsC� or σCRsHa

bonds is contained in the carbonyl plane, i.e., for θ ) 0,
120, 180, and 300°. Similar effects are expected for the
respective “opposite interactions”, which for the sake of
simplicity in this work will be called “back-donation”
interactions, i.e., πCdOf σ*CRsC� and πCdOf σ*CRsHa. It is
noted that all these interactions follow either a sin2 θ or sin2

τ law, where θ and τ are the angles formed by the departure
of the σCRsC� and σCRsHa bonds from the carbonyl plane,

respectively. It is expected that the simultaneous occurrence
of these two types of σ/π hyperconjugative interactions
activates a second coupling pathway for both 3JHH(180°) and
3JHH(0°). However, the efficiency of such a σ/π coupling
pathway could be different for each type of coupling and
responsible for the sign inversion of C1 coefficient.

Propanal Model. To select the functional and basis set
appropriated for this work and to test the quality of the used
calculations, the results from different methods and basis set
are presented in Figure 3. The SSCCs for propanal have been
calculated at the B3LYP functional and at the SOPPA and
CCSD(SOPPA) approaches using EPR-III basis set. Al-
though some qualitative differences are observed, for in-
stance, the calculated values follow the relation 3JHH

(CCSD(SOPPA)) < 3JHH (SOPPA) < 3JHH (B3LYP) inde-
pendently of θ, in general, the qualitative dependence on θ
is similar (see Figure 3). As regards to the differences 3JHH

(180) - 3JHH (0), the ab initio methods give smaller values
in magnitude but, again, the dependence on θ is similar for
the three methods.

In addition, the B3LYP functional has been used with four
basis sets of different size. The results for all basis sets are
qualitatively similar. Moreover, the B3LYP results obtained
with the smallest basis set (TZVP) yield the closest results
to those of ab initio methods. This similitude between
B3LYP/TZVP and ab initio/EPR-III could be attributed to a
compensation between method and basis sets effects. On the
other hand, B3LYP/TZVP has been recently tested success-
fully in the calculation of NMR coupling constants25 and
EPR hyperfine couplings.21 Accordingly, we use B3LYP/
TZVP to calculate 3JHH for the remaining systems presented
in this work.

To quantify the hyperconjugative interaction and its effect
on the SSCCs, we carried out 3JHH as well as NBO
calculations for the propanal model. Using the notation
shown in Figure 1, we calculated 3JHH(180°) and 3JHH(0°)

Figure 2. Homoallylic interproton coupling JHb,He whose
coupling pathway is originated in the simultaneous existence
of σCsHb f π*CdC and σCsHe f π*CdC σ/π hyperconjugative
interactions.

Figure 3. Ab initio and DFT calculated 3JHaHc(180°), 3JHaHc(0°), and 3JHaHc(180°) - 3JHaHc(0°) differences for propanal model.
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for the ethyl HaCRsC�Ηc moiety. Both types of couplings
were calculated for different rigid rotations around the CcsCR

bond, θ angle; values for 3JHaHc(180°) were obtained taking
the staggered conformation of the ethyl group, while values
of 3JHaHc(0°) were obtained taking the eclipsed conformation,
Figure 1. Figure 4a shows the 3JHaHc(180°) - 3JHaHc(0°)
difference as well as the hyperconjugative interactions σCRsHa

f π*CcdO and σCRsC� f π*CcdO versus θ. The following
features of these three plots shown in Figure 4a are worth
highlighting:

(a) The values of 3JHH(0°) and 3JHH(180°) depend notably
on θ, this dependence being nonsymmetric around θ ) 180°.
This asymmetry seems to originate mainly on the proximity
between the carbonyl O and the Ha atom for θ )120° and

the carbonyl O and the Hc atom for θ ) 300° (the former
for both the staggered and the eclipsed conformation, and
the latter only for the ethyl staggered conformation).

(b) Both σ/π hyperconjugative interactions follow the well-
known sin2 θ dependence, lagging the σCRsC�f π*CcdO plot
60° with respect to that of σCRsHa f π*CcdO.

As shown in Figure 4b, both types of couplings depend
on θ angle, the sensitivity of 3JHH(0°) being higher than that
of 3JHH(180°). This indicates that the “activated” coupling
pathway due to the hyperconjugative interactions involving
the carbonyl group shows a different efficiency for 3JHH(180°)
and 3JHH(0°). In Figure 4, the zones of maxima hypercon-
jugation (both, σCRsHaf π*CcdO and σCRsC�f π*CcdO), that
coincide with the zones where 3JHH(180) < 3JHH(0), are

Figure 4. (a) Plots of E2(NBO) σCRsC� f π*CdO (•), σCR-Ha f π*CdO (9), and 3JHaHc(180°) - 3JHaHc(0°) (*). (b) Plots of 3JHaHc(0°)
(2), and 3JHaHc(180°) (1) vs dihedral angle θ. The zones of maxima hypercongujation (both, σCRsHa f π*CcdO and σCRsC� f
π*CcdO) that coincide with the zones where 3JHH(180) < 3JHH(0) are shaded in these plots.
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highlighted. Those zones correspond to an inversion of the
C1 coefficient.

For θ ) 0, 120, 180, and 300°, the behavior of both 3JHH(0)
and 3JHH(180) SSCCs cannot be described by the σ/π
hyperconjugative interactions because either σCRsC�f π*CcdO

or σCRsHaf π*CcdO interactions are equal to zero. For these
four conformers, 3JHH(180°) is notably larger than in 3JHH(0°)
(about 1 Hz). It is interesting to remark that in ethane
molecule, this difference, 3JHH(180) - 3JHH(0), calculated
at the MCSCF/RAS level, is around 0.94 Hz,26 which is
similar to that found above.

For θ ) 240° the σ/π hyperconjugative interactions seem
to be the main contribution to both SSCCs in defining the
3JHH(180°) - 3JHH(0°) value. On the other hand, for θ )
270° the carbonyl O atom is nearing the σC�-Hc bond, the
nearest approach being for θ ) 300°. It is observed in Figure
4b that 3JHaHc(180°) for θ ) 300° is similar to 3JHaHc(180°)
for θ ) 120°, yielding the expected conclusion that the
proximity effect on 3JHH(180°) is similar whether either the
σCRsHa or σC�sHc bonds are close to the carbonyl oxygen.

It is important to remark that the coupling pathway defined
by the simultaneous σCRsHa f π*CcdO, σCRsC� f π*CcdO

hyperconjugative interactions and their respective back-
donations refers only to the FC term. The sum of the SD,
PSO, and DSO contributions are larger in absolute value for
3JHH(180°) than for 3JHH(0°); however, the SD + PSO +
DSO sum for each of them is notably insensitive to the θ

angle and therefore the 3JHH(180°) - 3JHH(0°) trend is by
far defined by the FC term.

Thiopropanal and 1-Butene Models. The analysis pre-
sented above for propanal supports the hypothesis about the
electronic origin of the 3JHH(180°) < 3JHH(0°) relationship
in this model system. Because hyperconjugative interactions
of types σCR-Ha f π*CcdO, σCRsC� f π*CcdO, and their
respective back-donations play the main influence on such
a relationship, it is considered convenient to look for similar
models where the main difference with propanal is due to
σ/π interactions. For instance, if the carbonyl group in
propanal is replaced by a thiocarbonyl group, Figure 1, then
it is expected that the π*SdC antibonding orbital to be a better
electron acceptor than the π*OdC antibonding orbital. Hence,
in thiopropanal, the relevant σ/π interactions should be more
important than in propanal. On the other hand, if in propanal
the carbonyl group is replaced by a vinyl group, Figure 1,
then the relevant σ/π interactions in 1-butene should be
weaker than in propanal because the π*CdC antibonding
orbital is a poorer electron acceptor than both carbonyl and
thiocarbonyl group.

Figure 5a-c shows plots of the σCRsHa f π*CcdX, and
σCRsC� f π*CcdX interactions vs θ for thiopropanal (X )
S), propanal (X ) O), and 1-butene (X ) CH2), respectively.
These interactions follow the expected trend, i.e., they
decrease along the series from thiopropanal to 1-butene,
whereas the angular dependence is similar in all three cases.

Figure 5. Plots of E2(NBO) σCRsC� f π*CdX (•) and σCRsHa f π*CdX (9) (first row); 3JHaHc(180°) - 3JHaHc(0°) (second row); and
plots of 3JHaHc(0°) (2) and 3JHaHc(180°) (1) (third row) vs dihedral angle θ, for thiopropanal (first column), propanal (second
column), and 1-butene (third column).
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The 3JHH(180°) - 3JHH(0°) differences for the three model
molecules are plotted in Figure 5d-f. They follow qualita-
tively similar trends and their amplitude decreases notably
along this series, paralleling the behavior of σ/π interactions
displayed in Figures 5a-c. These results strongly support
the hypothesis about the importance played by σ/π interac-
tions in defining the 3JHH(180°) < 3JHH(0°) relationship. The
plots of 3JHH(0°) and 3JHH(180°) vs θ are shown in Figures
5g-i. Both plots show essentially similar behavior along this
series, where differences can be easily rationalized as
originating in the two effects discussed above for propanal,
i.e., the σ/π hyperconjugative interactions and the proximity
effect between the carbonyl and ethyl groups. Along this
series, it is interesting to note that the different efficiency of
the “activated” coupling pathway for 3JHH(0°) and 3JHH(180°)
increases when increasing the σ/π interactions, reinforcing
the possibility of obtaining 3JHH(180°) < 3JHH(0°) when the
molecular fragment M shows stronger hyperconjugative
interactions with the ethyl group.

4. Conclusions

The origin of the unusual C1 positive Fourier coefficient, or
the anomalous 3JHH(180°) - 3JHH(0°) relationship found in
some molecules has been studied at the DFT level in three
model molecules.

The effects of the substituent and its rotation on 3JHH(180°)
and 3JHH(0°) SSCC have been investigated at B3LYP level
and with the TZVP basis set after checking that these results
are similar to those of ab initio levels (SOPPA and CCSD-
(SOPPA)) and to those of larger basis sets (EPR-III, aug-
cc-pVTZ, and BS2).

It is concluded that strong hyperconjugative interactions
involving both bonding and antibonding orbitals of the
coupling pathway as well as of the carbonyl group are
essential to explain the “anomalous” behavior of 3JHH. Such
interactions define an additional coupling pathway for 3JHH.
For propanal, this additional pathway partially can be
assigned to simultaneous σ/π hyperconjugative interactions
σCRsHa f π*CcdX, and σCRsC� f π*CcdX (X ) O). These
interactions are more efficient for 3JHH(0°) than for
3JHH(180°). Moreover, for θ angles where these interactions
are strongest, the 3JHH(0°) couplings are larger than
3JHH(180°) and the C1 coefficient becomes positive.

Analogous interactions have been detected in thiopropanal
(X ) S) and 1-butene (X ) CH2). In the former, the
hyperconjugative effects are stronger than in propanal
because of a better electron acceptor behavior of the π*SdC

antibonding orbital, whereas in butane, the weaker effect is
attributed to the poorer electron acceptor behavior of the
π*CdC antibonding orbital.
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Abstract: The combined density functional theory/multireference configuration interaction
(DFT/MRCI) method [Grimme and Waletzke. J. Chem. Phys. 1999, 111, 5645] has been
employed to study the 1La and 1Lb states of linear polyacenes and the low-lying triplet and singlet
states of linear polyenes and diphenyl-polyenes. We have systematically investigated the
dependence of the electronic state properties on technical parameters of the calculations such
as the atomic orbital basis set or the geometry optimization approach. The choice of basis set
appears to be of minor importance whereas the excitation energies of the polyenes are quite
sensitive to the ground-state geometry parameters. The DFT/MRCI energies at the B3-LYP
optimized geometries systematically underestimate the experimental values, but we do not
observe a bias toward one or the other type of state. The energy gaps between the electronically
excited states are reproduced very well. In particular, this applies also to the first excited singlet
2 1Ag

- and the optically bright 1Bu
+ state of the polyenes. The latter appears to be the S3 or even

S4 state in longer polyenes where the multiconfigurational 1Bu
- state represents S2. Frequencies

and intensities of the excited-state absorption from the 2 1Ag
- state are found to be strongly

geometry dependent.

1. Introduction

Many biologically relevant pigments such as carotenoids and
retinal contain extended polyene chromophores. Naturally
occurring carotenoids possess between 7 and 11 conjugated
double bonds and exhibit a variety of low-lying electronic
states, many of which are not easily accessed spectroscopi-
cally because the corresponding one-photon transition from
the ground state is forbidden (gerade-states, triplets, double
excitations).1 A reliable quantum chemical description of
these states could therefore help understanding the intricate
photophysical relaxation mechanisms these molecules un-
dergo after electronic excitation.

In recent years, time-dependent density functional theory
(TDDFT) has emerged as standard tool for the evaluation
of electronically excited states of large molecules for which
traditional wave function based methods are not feasible.
Unfortunately, TDDFT in combination with standard func-
tionals fails in describing the correct ordering of the two
lowest excited singlet states of linear polyenes and caroten-
oids.2-5 The Tamm-Dancoff approximation (TDA) to
TDDFT appears to perform better in this respect.2 However,
the success of this method was recently shown to be based
on fortuitous cancelation of errors.6 It has been firmly
established that the optically bright 1Bu state which originates
from the (HOMO f LUMO) single excitation is not the
lowest excited singlet state in linear polyenes, possibly except
for butadiene.7,8 Instead, the S1 state possesses 1Ag symmetry
and exhibits a highly multiconfigurational character with the
(HOMOf LUMO)2, (HOMO - 1f LUMO), and (HOMO
f LUMO + 1) configurations as leading terms.9-11 Com-
plete active space second-order perturbation theory (CASPT2)

* To whom correspondence should be addressed. Tel.: +49-211-
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or more general multireference second-order perturbation
theory (MRMP2) treatments of the electron correlation are
capable of describing these states and their energetic ordering
properly.12-14 With increasing chain length it becomes more
and more demanding, however, to include the appropriate
orbitals in the active space. To the best of the authors’
knowledge, no CASPT2 or MRMP2 treatment has been
published for polyenes with seven or more conjugated double
bonds. Coupled-cluster calculations with single and double
excitations (albeit with an approximate treatment of the
doubles, CC2) can in principle be applied to study the
electronically excited states of large molecules. However,
because of the double-excitation character of the 2 1Ag state,
also this method places the 2 1Ag state considerably above
the 1 1Bu state in hexatriene15-17 and octatetraene.17 The
second-order algebraic diagrammatic construction (ADC(2))
method18 allows in principle for the consistent treatment of
doubly excited states. Applications to several polyenes
including a treatment of doubly excited configurations
through zeroth (ADC(2)-s) or first order (ADC(2)-x) are
available6 and will be discussed below.

Another spectroscopically important class of molecules
with extended π-systems are linear condensed acenes. Parac
and Grimme19 could show that TDDFT yields substantial
errors in the description of the short-axis polarized La state
while the long-axis polarized Lb is described well. The CC2
method, on the other hand, achieves a balanced description
of the two states, in this case. Here, the difficulties do not
arise from a double excitation character as for the 2 1Ag state
of the polyenes. For benzene they were shown to result from
large dynamical σ-π polarization effects.20

In the present work, we investigate the performance of
the combined density functional theory and multireference
configuration interaction method (DFT/MRCI)21 on low-
lying singlet and triplet states of polyenes, R,ω-diphenyl-
polyenes, and polyacenes. The DFT/MRCI method has been
shown to yield reliable excitation energies and transition
moments at reasonable cost for a variety of molecules.17,21-27

Particular emphasis is put on the above-mentioned critical
cases, namely the 2 1Ag and 1 1Bu states of polyenes and
R,ω-diphenyl-polyenes as well as the La and Lb states of
polyacenes. In addition, we study trends of the properties of
further low-lying states in the series of all-trans-polyenes
beginning with 1,3,5-hexatriene and extending to 1,3,5,7,9,
11,13,15,17,19,21,23,25-hexacosatridecaene, as the location
of these states may be important for the excited-state
absorption (ESA) and for the relaxation dynamics following
the population of the optically bright (HOMO f LUMO)
singlet excited state.

2. Methods and Technical Details

Computations on larger polyenes may become cumbersome
if extended basis sets are used. Therefore, our first issue was
a search for technical parameters of the calculation with
optimal cost/performance ratio.

Three qualitatively different basis sets from the Turbomole
library28 were employed: the split valence basis set with (d)
polarization functions for non-hydrogen atoms, (SV(P)), the
valence triple-� basis set with polarization functions (d,p)

(TZVP), and the valence triple-� basis set with a double set
of polarization functions (2d1f,2p1d) (TZVPP). If not speci-
fied otherwise, the equilibrium nuclear arrangements of the
electronic ground states were determined using density
functional theory (DFT) in combination with a restricted
closed-shell Kohn-Sham determinant. The geometries of the
first excited triplet states were optimized utilizing unrestricted
DFT (UDFT). Finally, TDDFT29 was used to obtain the
minimum geometries of the singlet-coupled (HOMO f
LUMO) excited states. These calculations were carried out
employing the Turbomole suite of programs.30 We also tested
the performance of different density functionals for geometry
optimization. Among these, the local B-LYP functional31,32

is the less expensive one in terms of computer time because
one can make use of the resolution-of-the-identity (RI)
approximation.33,34 The second functional used is the well-
known B3-LYP functional.32,35,36 It typically yields reliable
bond distances and frequencies. Since it is a hybrid functional
which includes 20% Hartree-Fock exchange, no use of the
RI approximation can be made. The third functional,
BH-LYP,32,37 includes 50% Hartree-Fock exchange. In
combination with the DFT/MRCI approach it is the standard
functional used for generating the MO basis and Fock matrix
elements. With regard to minimum geometries it is known
to yield typically somewhat too compact molecular structures.
As purely wave function based methods Hartree-Fock (HF)
and second-order Møller-Plesset perturbation theory (MP2)
are employed in a few test cases.

Electronic excitation energies are evaluated by means of
the DFT/MRCI method.21 The idea behind this approach is
to include major parts of dynamic electron correlation by
density functional theory whereas short to medium-sized
MRCI expansions take account of static correlation effects.
In this way, severe size-extensivity problems can be avoided
even for systems with many valence electrons. The configu-
rations in the MRCI expansion are built up from Kohn-Sham
(KS) orbitals of a closed-shell reference state. In the effective
DFT/MRCI Hamiltonian, five empirical parameters (scaling
factors for Coulomb and exchange integrals as well as energy
cutoff parameters) are employed that depend only on the
multiplicity of the desired state, the number of open shells
of a configuration, and the type of density functional
employed, but not on the specific atom or molecule. To avoid
double-counting of dynamic correlation, the MRCI expansion
is kept short by extensive configuration selection. Currently,
optimized parameter sets for the effective DFT/MRCI
Hamiltonian are available in combination with the BH-LYP
functional. We employ the original set of parameters21 here
in combination with an orbital selection threshold of 1.0EH.
For details concerning the integration of DFT information
into the MRCI procedure and the parameter fitting, we refer
to the original publications.21

3. Results and Discussion

3.1. Benchmark Systems. 3.1.1. Linear Conjugated
Acenes. TDDFT in combination with standard functionals
has been shown to give dramatic failures for the short-axis
polarized 1La state of linear conjugated acenes.19 The 1La
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state has 1B2u symmetry and results from the (HOMO f
LUMO) excitation. In a valence-bond picture, this state
exhibits large contributions from ionic components. In
addition to the 1La state, Parac and Grimme19 studied the
long-axis polarized 1Lb state. The latter state exhibits 1B3u

symmetry. Its electronic structure is mainly covalent. For
molecules with 2-4 conjugated rings, its wave function is
dominated by a nearly equal mixture of (HOMO - 1 f
LUMO) and (HOMO f LUMO + 1) excitations.

We computed vertical DFT/MRCI excitation energies at
DFT(B3-LYP) optimized geometries for polyacenes with
2-6 and with 8 rings using both SV(P) and TZVP basis
sets. Our results are collected in Table 1 and are compared
to the TDDFT and CC2 excitation energies of Parac and
Grimme.19 These authors also published estimates of vertical
experimental excitation energies which they derived from
experimental 0-0 data38 by correcting for solvent and
relaxation effects. These estimates are displayed in Table 1
as well. It is seen that the DFT/MRCI results do not suffer
from the flaws of the TDDFT treatments. Actually, their
accuracy is comparable to the one of the ab initio CC2
method, but with a tendency of slightly underestimating the
1La and 1Lb excitation energies whereas CC2 overestimates
the experimental values by approximately the same amount.
With regard to the treatment of large π-systems, it is
encouraging that the reduction of the basis set quality from
TZVP to SV(P) has almost no effect on the DFT/MRCI
excitation energies. The underlying reason for this behavior
is the fact that the (virtual) DFT orbitals are significantly
less diffuse than HF orbitals. Thus, the basis set size does
not influence the orbital energies as much as in HF.

Before we take a more detailed look at the 1Lb and 1La

energies, a short overview over the energetic order of
molecular orbitals will be given. In the compounds with even
number of rings, the HOMO - 1 belongs to the b1u

irreducible representation (irrep) of the D2h molecular point
group, the HOMO has au symmetry, while the virtual orbitals
LUMO and LUMO + 1 transform according to the b2g and
b3g irreps, respectively. In anthracene, the order is reversed
with b2g and b3g orbitals building HOMO - 1 and HOMO,
respectively, and LUMO and LUMO + 1 belonging to the
b1u and au irreps, respectively. According to our calculations,
the order of the frontier orbitals becomes irregular for the
polyacenes with more than 4 rings. While the identity of
HOMO and LUMO is preserved, we find the highest
occupied b2g orbital as HOMO - 2 in pentacene, with an
orbital of au symmetry forming HOMO - 1. A similar
situation is found for the unoccupied orbitals. Here, an orbital
of b2g symmetry forms the LUMO + 1 while the lowest
unoccupied orbital of au symmetry is LUMO + 2. Accord-
ingly, we find the (HOMO - 2 f LUMO) and (HOMO f
LUMO + 2) excitations to be dominating the electronic
structure of the 1Lb state. Similarly, the highest occupied b1u

orbital has been shifted to HOMO - 2 in hexacene and the
lowest unoccupied b3g orbital is LUMO + 2 here. HOMO
- 1 exhibits b3g symmetry while the LUMO + 1 belongs to
the b1u irrep. The tendency of shifting the orbitals, involved
in the 1Lb excitation, away from the Fermi level continues
in octacene. Here, the corresponding b1u and b3g orbitals yield
HOMO - 3 and LUMO + 3, respectively.

A close look at the excitation energies of particular
members of this series in Table 1 shows that the DFT/MRCI
and CC2 methods correctly predict the swap of energetic
order of the 1Lb and 1La states to occur between n ) 2 and
n ) 3. In polyacenes with 3-6 conjugated rings, the 1La

state represents the S1 state. In octacene, our DFT/MRCI
calculation yields 2 1Ag as the first excited singlet state. Its
MRCI expansion is dominated by double excitations with
the leading term being the (HOMO f LUMO)2 configura-
tion. In contrast to the situation in linear polyenes (see below)

Table 1. Calculated Vertical Absorption Energies ∆Evert [eV] of Linear Condensed Acenes in Comparison with Previous
Theoretical Results and Experimental Valuesa

DFT/MRCI

number
of rings SV(P) TZVP BP86b B3-LYPc CC2d expe

1 1B2u, 1La state
2 4.70 (0.1257) 4.66 (0.1222) 4.11 4.38 4.88 4.66
3 3.53 (0.1279) 3.51 (0.1249) 2.95 3.21 3.69 3.60
4 2.75 (0.1111) 2.74 (0.1088) 2.17 2.43 2.90 2.88
5 2.22 (0.0929) 2.22 (0.0916) 1.63 1.89 2.35 2.37
6 1.86 (0.0749) 1.85 (0.0744) 1.23 1.49 1.95 2.02
8 1.46 (0.0407) 1.44 (0.0418) 0.68 0.94 1.43 1.58

1 1B3u, 1Lb state
2 4.13 (0.0002) 4.15 (0.0001) 4.13 4.26 4.47 4.46
3 3.56 (0.0012) 3.59 (0.0007) 3.64 3.87 3.89 3.64
4 3.20 (0.0034) 3.22 (0.0023) 3.24 3.47 3.52 3.39
5 2.96 (0.0069) 2.99 (0.0054) 2.96 3.21 3.27 3.12
6f 2.72 (0.0051) 2.76 (0.0051) 2.76 3.02 3.09 2.87

2.90 (0.0066) 2.93 (0.0045)
8 2.77 (0.0269) 2.78 (0.0244) 2.50 2.77 2.87

a Oscillator strengths f(r) are given in parentheses. b See ref 19 for TDDFT(BP86) using Dunning’s cc-pVTZ basis at the ground-state
geometry obtained from DFT(B3-LYP) calculations in a TZVP basis. c See ref 19 for TDDFT(B3-LYP) using Dunning’s cc-pVTZ basis at the
ground-state geometry obtained from DFT(B3-LYP) calculations in a TZVP basis. d See ref 19 for CC2 using Dunning’s cc-pVTZ basis at
the ground-state geometry obtained from DFT(B3-LYP) calculations in a TZVP basis. e Derived from 0-0 transition energies in solution.38

For details see ref 19. f The (HOMO - 2 f LUMO) and (HOMO f LUMO + 2) configurations are spread over the 1 1B3u and 2 1B3u DFT/
MRCI wave functions. Due to their energetic proximity and mixed wave function character, the two low-lying 1B3u states exhibit similar
oscillator strengths and together make up the 1Lb state in this molecule. For this reason, two values are listed.
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its wave function has very little contributions from single
excitations. The 1 1Ag f 2 1Ag one-photon transition is
symmetry-forbidden so that we do not expect to see this state
in the absorption spectrum of octacene. The 1La state
represents the S2 state here.

The excitation energy of the 1Lb state varies significantly
less than the one of the 1La and other low-lying singlet states.
With extending molecular size, the 1Lb state therefore
switches order quite often (Figure 1). It represents the S1

state in naphthalene, shifts to S2 in anthracene and tetracene,
and is the third excited singlet (S3) in pentacene where the
doubly excited 2 1Ag state takes the position of the S2 state.
As mentioned above, the leading configurations of the 1 1B3u

(1Lb) state are (HOMO - 2 f LUMO) and (HOMO f
LUMO + 2) here. The 1 1B1g state lies very close by (at
2.99 eV in the SV(P) basis and at 3.02 in the TZVP basis)
but is optically dark. Its wave function has large contributions
from (HOMO - 1 f LUMO), (HOMO f LUMO + 1),
and double excitations. The situation is even more complex
in hexacene. As in pentacene, the S2 state is the doubly
excited 2 1Ag. The 1 1B1g has dropped below the 1Lb state
and forms S3. The 1 1B3u state is the fourth excited singlet
in hexacene. Unlike the situation in the smaller polyacenes,
its wave function is dominated by the double excitations
(HOMO - 1, HOMOf LUMO2) and (HOMO2f LUMO,
LUMO + 1), but has still large components from (HOMO
- 2f LUMO) and (HOMOf LUMO + 2). The latter are
the leading configurations in 2 1B3u which corresponds to S6

in this molecule. Due to their energetic proximity and mixed
wave function character, the two low-lying 1B3u states exhibit
similar oscillator strengths and together make up the 1Lb state.
For this reason, two values are listed as 1Lb excitation energy
in Table 1. In octacene, the near-degeneracy of the 1 1B3u

and 2 1B3u states does not persist. Although the 1 1Ag f 1
1B3u transition at 1.46 eV (SV(P) basis) is formally sym-
metry-allowed, it is one-photon forbidden because of the

double-excitation character of the state. The 2 1B3u (S9) wave
function clearly represents the 1Lb state in octacene, closely
followed by another optically allowed transition, 1 1Ag f 3
1B2u, at 2.86 eV (SV(P) basis).

3.1.2. Short Linear Polyenes. For the first members of the
series, gas phase spectra or high-resolution spectra of jet-
cooled molecules are available.39-47 These experimental
conditions guarantee that environmental effects on the spectra
are small. Electron impact studies48-51 revealed the ap-
proximate positions of triplet states. Furthermore, bond
lengths of trans-1,3,5-hexatriene have been determined
experimentally by gas phase electron diffraction.52 In addi-
tion, low-temperature spectra of short polyenes have been
recorded with high resolution in Shpolskii matrices of
n-alkanes.53-55 Comparison of the band positions with gas
phase spectra can thus provide an estimate of solvent shifts.
In addition to numerous experimental investigations, exten-
sive theoretical studies with ab initio wave function
methods,12-14,16,17,56-62 and (TD)DFT2-4,15,63 have been
carried out.

For these reasons, we have chosen trans-1,3,5-hexatriene
(HT), trans,trans-1,3,5,7-octatetraene (OT), and all-trans-
1,3,5,7,9-decapentaene (DP) as benchmark systems for which
detailed comparison with experimental data is made. More-
over, these molecules are small enough to test basis set
effects on the geometrical parameters and on the spectral
properties.

Hexatriene. Conflicting results exist on the energetic
position of the 2 1Ag state of HT. Buma et al.44 and Petek et
al.45 have shown by means of fluorescence excitation
spectroscopy that a one-photon forbidden state with origin
at 4.26 eV (presumably 2 1A1) lies below the optically
allowed 1 1B2 state in isolated cis-hexatriene. The origin of
the corresponding 2 1Ag of trans-hexatriene has not been
observed, but it can be assumed to lie within a few hundred
wavenumbers of the cis-band. Coherent anti-Stokes Raman
scattering (CARS) and coherent Stokes Raman scattering
(CSRS) experiments on liquid cis- and trans-hexatriene were
carried out at ambient temperatures by Fujii et al.64 These
authors report the two-photon absorption (TPA) band to lie
a few thousand inverse centimeters above the intense dipole-
allowed one-photon transitions (1 1B2r 1 1A1 (cis) or 1 1Bu

r 1 1Ag (trans)). In light of the results of Buma et al.44 and
Petek et al.,45 the assignment of this TPA band to the 2 1A1

r 1 1A1 or 1 1Bur 1 1Ag appears questionable at first sight.
As we shall see below, our calculations can help to resolve
this conflict. The position of the 1 1Bu r 1 1Ag origin is
unambiguous, on the other hand. The origin peakswhich is
also the strongest peak in the spectrumsis reported at 4.93
eV in gas phase absorption spectra42,65 and at 4.95 eV in a
resonant enhanced multiphoton ionization (REMPI) spec-
trum.46 The strong origin transition of the 1 1Bu r 1 1Ag

band and the lack of extended vibrational structure led
Leopold et al.42 to the conclusion that the geometry of the 1
1Bu state is not largely distorted, i.e., in particular it is
believed to be planar. Myers and Pranata66 come to a similar
conclusion with regard to planarity but report significant
reductions in the force constants for both terminal and central
double-bond twisting with respect to the ground state.

Figure 1. DFT/MRCI vertical electronic excitation energies
of polyacenes at the respective 1 1Ag ground-state minimum
geometry as functions of the number of condensed rings N.
Hexagons symbolize 1Ag, diamonds 1B2u, circles 1B3u, and
triangles 1B1g.
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Electron impact studies48,49 observe a different intensity
distribution of the transition. Flicker et al.49 find the 0-0
transition at 4.95 eV in agreement with optical spectra but
the band maximum occurs at 5.13 eV. Despite considerable
effort no emission has been observed from trans-1,3,5-
hexatriene after 1 1Bu r 1 1Ag excitation. According to
Leopold et al.,42 the observed broadband widths of the
hexatriene absorption spectrum appear to be compatible with
an extremely short lifetime of the primarily excited state due
to ultrafast internal conversion to a lower-lying singlet.
Transitions to higher-lying singlet states of HT were observed
by Gavin and Rice39 but were assigned to Rydberg transi-
tions. Since we did not include diffuse basis functions, a
comparison with experiment cannot be made in these cases.

Due to different selection rules, transitions to triplet states
can be observed with high intensity by means of electron
impact spectroscopy. Vertical excitation energies were
published for T1 (2.61 eV, 1 3Bu) and T2 (4.11 eV, 1 3Ag).49

Frueholz and Kuppermann50 could resolve the vibronic
structure of the second triplet and were thus able to determine
its adiabatic excitation energy (3.75 eV).

The vertical DFT/MRCI excitation energies of HT (Table
2) show a similar trend as already observed for the poly-
acenes. For the two lowest singlet states, the experimental
reference values are underestimated by about 0.2 eV, but
no preference is given to either the 2 1Ag or the 1 1Bu state.
Both are found to be nearly degenerate in the Franck-Condon
(FC) region, in agreement with CASPT2 results12,14,17 and
experimental evidence.42 In contrast, the coupled-cluster
methods with single and double excitation operators (CCSD
and CC2)17 and the strict ADC(2) approach, ADC(2)-s,6 yield
very large energy gaps. It appears that they do not properly
account for the multiconfiguration effects in the 2 1Ag state.
In HT, the (HOMO - 1f LUMO) and (HOMOf LUMO
+ 1) single excitations are prominent configurations in the
CI expansion of the S1 state, but unlike the situation in short
polyacenes, they are not the leading terms. The latter is
dominated by the (HOMO f LUMO)2 double excitation
instead. The extended ADC(2) method, ADC(2)-x, which
includes the treatment of double excitations through first
order, seems to overshoot, yielding a significantly too low
excitation energy of the 2 1Ag state in HT.6 With regard to
the basis set dependence of the DFT/MRCI results, only
slight variations of the 2 1Ag excitation energy are observed.
The 1 1Bu state, which originates from the (HOMO f

LUMO) excitation and corresponds to ionic valence-bond
structures, appears to be more sensitive to the quality of the
basis set. The two lowest triplet states are mainly represented
by single excitations. As observed already by Schreiber et
al.17 their correlation treatment is less demanding. Here, all
the methods perform equally well.

In order to distinguish direct basis set effects on the
excitation energy and indirect effects through the geometry,
we carried out single-point DFT/MRCI calculations in the
SV(P) basis set at the ground-state geometries obtained from
B3-LYP optimizations in the TZVP and TZVPP bases,
respectively, for the wave function methods HF, RIMP2, and
MP2 and for a structure with experimentally derived bond
distances.52 The TZVP- and TZVPP-optimized geometries
are practically identical while the bond distances of the
SV(P)-optimized structure are consistently longer by about
1 pm (see Figure 2). Comparison to the geometry parameters
derived from the X-ray structure of gaseous HT52 shows that
the terminal double bond length is reproduced excellently
in the calculations using at least a TZVP basis. Our value
for the central double bond distance (134.7 pm) is in good
agreement with the CASSCF value of 134.5 pm by Na-
kayama et al.14 but is markedly shorter than the experimental
value (136.7 pm).52 We refrained from optimizing the
geometry of the 2 1Ag state because of its double excitation
character. For the T1 state (1 3Bu), a reversal of single and

Table 2. Basis Set Dependence of Vertical DFT/MRCI Absorption Energies ∆Evert [eV] of HT in Comparison with Previous
Theoretical Results of Correlated ab initio Wave Function Methods and Experimental Values

method DFT/MRCI QCI/CI6a CASPT2b,c,d CC2d CCSDd CC3d ADC(2)-se ADC(2)-xe

basis SV(P) TZVP TZVPP λmax

2 1Ag 4.95 4.96 4.98 5.74 5.19 5.34 5.42 6.67 6.61 5.72 6.75 4.07 5.21f

1 1Bu 5.07 4.97 4.94 5.14 5.01 5.37 5.31 5.41 5.72 5.58 5.36 5.15 5.13g, 4.93h,i

1 3Bu 2.46 2.47 2.49 2.84 2.55 2.60 2.71 2.78 2.62 2.69 2.61g

1 3Ag 4.01 3.99 4.01 4.12 4.24 4.31 4.40 4.28 4.32 4.11g

a See ref 56. QCI for 2 1Ag, CI6 + SC for 1 1Bu and 1 3Bu. b See ref 12. CASPT2 based on CASSCF with 6 active electrons in 4 au and 4
bg active orbitals, (6s3p1d/2s1p) ANO basis + Rydberg functions, and experimental geometry parameters. c See ref 14. CASPT2 based on
CASSCF with 6 active electrons in 12 active orbitals, (3s2p1d/2s) basis, and experimental geometry parameters. d See ref 17. CASPT2
based on CASSCF with 6 active electrons in 6 active orbitals, TZVP basis, and ground-state MP2/6-31G/ geometry. e See ref 6. TZVP
basis and ground-state MP2/6-31G/ geometry. f See ref 64. TPA maxiumum of liquid HT at room temperature. g See ref 49. Band maximum
of low-energy electron impact spectrum. h See ref 42. 0-0 transition and absorption maximum of jet-cooled HT. i See ref 39. 0-0 transition
and absorption maximum of isolated HT.

Figure 2. C-C bond lengths of trans-1,3,5-hexatriene in the
1 1Ag electronic ground state (left), the first excited triplet state
1 3Bu (middle), and the optically bright 1 1Bu state (right).
Calculated values are represented by circles (B3-LYP, SV(P)
basis), plus signs (B3-LYP, TZVP basis), and hexagons (B3-
LYP, TZVPP basis). Squares correspond to experimentally
derived values determined from gas phase electron diffrac-
tion.52
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double bond character is found with the difference between
double and single bond being less pronounced than in the
ground state. The bond length alternation is even smaller in
the 1 1Bu state. In both cases, the trends for the SV(P) and
TZVP bases are the same as for the ground state, i.e., the
SV(P) basis yields minimum nuclear structures with slightly
longer bonds. Detailed results of the single-point calculations
are available in the Supporting Information (SI). In all cases,
the DFT/MRCI excitation energy obtained with the SV(P)
basis at the SV(P)-optimized geometry agrees much better
with the TZVP and TZVPP results than the DFT/MRCI value
computed in the SV(P) basis at the TZVP- and TZVPP-
optimized nuclear structures. We therefore conclude that it
is advantageous to employ the same basis set for geometries
and excitation energies.

Proceeding finally to adiabatic excitation energies (Table
3), few data are available for comparison. For the reasons
discussed above, an optimized minimum geometry of the 2
1Ag state is not easily obtained. In the absence of the
appropriate nuclear arrangement, we noticed that the absolute
energy of the 2 1Ag takes the lowest value at the T1 (1 3Bu)
minimum geometry which is conceivable on the basis of
qualitative arguments along the line of Walsh rules. For the
1 3Bu and 1 1Bu states, the UDFT- and TDDFT-optimized
nuclear arrangements were employed, respectively. We find
that the geometry relaxation effect on the excitation energy
is much more pronounced for the 2 1Ag state than for the 1
1Bu state. Even at the relaxed 1 1Bu minimum geometry, we
find the 2 1Ag state to lie more than 0.5 eV below the 1 1Bu

state. This explains the seemingly conflicting obvervations
by Buma et al.44 and Petek et al.45 on the one side and by
Fujii et al.64 on the other side and makes broad band widths
of the hexatriene absorption spectrum42 plausible. It appears
that the two states are near degenerate in the FC region with
the 2 1Ag state possibly located slightly above the optically
bright 1 1Bu state. Upon geometry relaxation, the 2 1Ag state
clearly becomes the S1 state, opening a fast relaxation channel
for the primarily occupied 1 1Bu state. Following the general
trends, the DFT/MRCI calculations underestimate the adia-
batic excitation energies of both states by about 0.2-0.3 eV.
For the T1 state we did not find a published value of the
0-0 energy, but we expect the deviation to be slightly
smaller than in the singlet cases.

Octatetraene. In order to assess the results of the present
theoretical study on OT, a short review of the experimental
findings will be given first. Gas phase OT has been reported

to fluoresce from its S2 (1 1Bu) state with a quantum yield of
about 0.1.40 The origin of the 1 1Bu r 1 1Ag transition of
jet-cooled OT is observed at 4.41 eV.41,43 Since it represents
the strongest peak in the absorption spectrum of OT, this
value is frequently used also by theoreticians as a measure
for the vertical excitation energy at the ground-state equi-
librium geometry.12,14,17 For lack of an alternative, we will
do the same here, but we regard the comparison with some
reservation. As detailed by Davidson and Jarzecki,67 a
comparison of the computed vertical excitation energy with
the corresponding maximum in the absorption spectrum
implicitly makes the assumption that the geometry displace-
ment of the excited state is fairly large so that its vibrational
wave function has maximal amplitude in the region of the
classical turning points, which is not the case here. Gavin et
al.40 estimate the energy gap between the 1 1Bu and 2 1Ag

state of OT to be approximately 0.8 eV, in line with the
results of newer measurements. In 1999, Pfanstiel et al.47

succeeded in recording a rotationally resolved one-photon
fluorescence excitation spectrum of OT. The first strong band
at 3.60 eV is located only marginally above the origin of
the 2 1Ag r 1 1Ag emission at 3.59 eV. In the condensed
phase at 77 K, relaxed emission from the lower-lying 2 1Ag

state of OT is observed with a quantum yield of ap-
proximately 0.6.40 The origin transition of 2 1Ag r 1 1Ag

was determined by TPA in two different solvents.54 The
solvent shift of this transition is rather small. In contrast,
the 1 1Bu state experiences large stabilization effects by the
surrounding n-alkanes, decreasing the energy gap between
the 1 1Bu and 2 1Ag state in n-hexane to approximately half
of the gas phase value. This should be kept in mind when
comparing quantum chemical results for isolated molecules
with experimental data in the condensed phase.

Detailed information on the vertical and adiabatic excita-
tion energies of the two lowest triplet states is available
through electron energy loss spectra which were recorded
with resolution of the vibrational structure by Allan et al.51

The authors also observed the 1 1Bu r 1 1Ag transition and
a higher-lying band with origin and maximum at 6.04 eV
which they tentatively assigned to the 2 1Bu r 1 1Ag

transition, but state that it could be due to the 3 1Ag state.
The results of the present theoretical investigation on OT

are collected in Tables 4-6. The minimum nuclear arrange-
ment of the electronic ground state was optimized using three
different density functionals as well as HF and MP2. The
resulting C-C bond lengths are displayed in Table 4 together
with earlier theoretical values obtained at the CASSCF
level14 and crystal structure data.68 It must be stressed again
that in all cases the MO basis and the Fock matrix elements

Table 3. Calculated Adiabatic DFT/MRCI Excitation
Energies ∆Eadia [eV] of HT in Comparison with
Experimental Values

∆Eadia (DFT/MRCI)

state SV(P) TZVP ∆E0-0

2 1Ag 4.07a 4.08a 4.26b

1 1Bu 4.79 4.67 4.93c, d, 4.94e, 4.95f

1 3Bu 1.90 1.94

a Energy at the 1 3Bu minimum. b See ref 45. Fluorescence
excitation of jet-cooled cis-1,3,5-hexatriene. c See ref 65.
Absorption of isolated HT. d See ref 42. Absorption of jet-cooled
HT. e See ref 46. REMPI spectrum. f See ref 49. Low-energy
electron impact.

Table 4. C-C Bond Distances [pm] in the Electronic
Ground State of OT

B-LYPa B3-LYPa BH-LYPa HFa MP2a CASSCFb expc

C4-C3 136.1 134.8 133.4 132.9 135.1 134.5 133.6
C3-C2 145.3 145.0 144.9 146.4 145.1 145.7 145.1
C2-C1 137.5 136.0 134.3 133.5 136.1 135.1 132.7
C1-C1′ 144.4 144.3 144.4 146.0 144.5 145.1 145.1

a Present work. SV(P) basis. b See ref 14. CASSCF with 8
active electrons in 12 active orbitals, (3s2p1d/2s) basis. c See ref
68. X-ray structure of crystalline OT.
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of the DFT/MRCI-Hamiltonian are constructed from a
Kohn-Sham calculation employing the BH-LYP functional.

The performance of the B-LYP functional is interesting
under cost considerations since the possibility to employ the
RI approximation brings about an enormous speed-up of the
geometry optimization compared to the hybrid functionals.
The C-C bond length alternation of the B-LYP ground-
state structure (no HF exchange) is less pronounced than in
the B3-LYP minimum geometry (20% HF exchange) whereas
the contrary is true for the BH-LYP functional (50% HF
exchange). Comparing with the pure HF results it appears
that a higher percentage of HF exchange leads primarily to
a shortening of the double bonds while the single bond length
variation is less pronounced. Addition of electron correlation,
on the other hand, causes a decrease of the bond length
alternation. The MP2- and B3-LYP-optimized geometries are
nearly indistinguishable. These C-C bond lengths also
closely resemble the CASSCF values published by Na-
kayama et al.14 The X-ray values for the C-C single bond
lengths68 are comparable to the theoretical values. However,
as already noticed by Serrano-Andrés et al.12 and Nakayama
et al.,14 the X-ray value for the double bond adjacent to the
central single bond in crystalline OT (132.7 pm)68 is
presumably too short.

For the study of the geometry dependence of vertical and
adiabatic excitation energies (Table 5), we employed the
SV(P) basis throughout. A less pronounced bond length
alternation introduces a bias in favor of the excited states.
Accordingly, the vertical DFT/MRCI excitation energies,
computed at the B-LYP geometry, are consistently lower than
at the B3-LYP geometry by about 0.2 eV for doubly excited
states and about 0.1 eV for single excitations. Again the
reverse trend is observed at the BH-LYP geometry and is
continued for the HF geometry. The vertical DFT/MRCI
excitation energies at the BH-LYP geometry are in good
agreement with the experimental data, with the above-
mentioned reservation that the position of the origin of the
1 1Bur 1 1Ag transition is not a good measure for the vertical
excitation energy even if this is the strongest band in the
vibrationally resolved spectrum. It might be worth noting in
this context that in the parametrization of the DFT/MRCI-
Hamiltonian against experimental band maxima originally
BH-LYP optimized ground-state geometries were em-
ployed.21 The general trend of the DFT/MRCI method to
underestimate the true excitation energy might therefore
partially result from a geometry effect during the param-
etrization. The decision, not to use the BH-LYP functional
for geometry optimization is made on the basis of two facts:
(1) The B3-LYP optimized geometry yields the lowest

Table 5. Dependence of DFT/MRCI Vertical Absorption ∆Evert and Adiabatic Excitation Energies ∆Eadia [eV] of OT on the
Geometry Parameters

∆Evert, SV(P) basis ∆Eadia, SV(P) basis

geometry B-LYP B3-LYP BH-LYP HF MP2 expa λmax B-LYP B3-LYP BH-LYP ∆E0-0

2 1Ag 3.82 4.02 4.26 4.48 4.01 4.41 ≈4.1b 3.21c 3.25c 3.29c 3.59d, 3.54e, 3.56f

1 1Bu 4.24 4.33 4.45 4.57 4.33 4.54 4.40g 4.12 4.10 4.07 4.41h, 4.41i, 4.40g

2 1Bu 5.08 5.28 5.53 5.69 5.27 5.67
3 1Ag 5.81 6.00 6.22 6.32 5.98 6.30
1 3Bu 1.90 2.02 2.17 2.33 2.02 2.30 2.10g 1.53 1.53 1.51 1.73g

1 3Ag 3.21 3.32 3.44 3.50 3.30 3.46 3.55g 3.25g

2 3Bu 4.31 4.42 4.54 4.57 4.41 4.57
2 3Ag 5.04 5.15 5.26 5.27 5.13 5.34
3 3Bu 5.30 5.40 5.80 5.87 5.48 5.80

a C-C bond distances adjusted to experimental values taken from ref 68. Crystal structure. b See ref 46. Estimated as 0-0 energy + 0.5
eV. c Energy at the 1 3Bu minimum. d See ref 47. Fluorescence excitation of jet-cooled OT. e See ref 54. Two-photon absorption in n-octane.
f See ref 54. Two-photon absorption in n-hexane. g See ref 51. Electron energy loss of gaseous HT. h See ref 41. Absorption of jet-cooled
OT. i See ref 43. Absorption and emission of jet-cooled OT.

Table 6. Basis Set Dependence of Calculated Vertical Absorption Energies ∆Evert [eV] of OT and Comparison with Previous
Theoretical Results of Correlated ab initio Wave Function Methods and Experimental Values

DFT/MRCI QCI/CI8a CASPT2b,c,d CC2d CCSDd CC3d

state SV(P) TZVP TZVPP λmax

2 1Ag 4.02 4.06 4.08 5.21 4.38 4.72 4.64 5.87 5.99 4.97 ≈4.1e

1 1Bu 4.33 4.27 4.24 4.79 4.42 4.81 4.70 4.71 5.07 4.94 4.41f, 4.41g, 4.40h

2 1Bu 5.28 5.27 5.29 5.76 5.74 6.91 6.89 6.06
3 1Ag 6.00 5.82 5.85 6.40 6.19 6.72 6.98 6.50
1 3Bu 2.02 2.05 2.06 2.52 2.17 2.37 2.33 2.40 2.23 2.30 2.10h

1 3Ag 3.32 3.31 3.36 3.39 3.61 3.70 3.76 3.62 3.67 3.55h

2 3Bu 4.42 4.39 4.42 4.71
2 3Ag 5.15 5.02 5.05 5.43
3 3Bu 5.40 5.48 5.51

a See ref 58. QCI for 2 1Ag, CI8 + SC for 1 1Bu and 1 3Bu. b See ref 13. CASPT2 based on CASSCF with 8 active electrons in 6 au and 5
bg active orbitals, (4s3p1d/2s1p) ANO basis + Rydberg functions, experimental geometry parameters. c See ref 14. CASPT2 based on
CASSCF with 8 active electrons in 12 active orbitals, (3s2p1d/2s) basis, experimental geometry parameters. d See ref 17. CASPT2 based
on CASSCF with 8 active electrons in 8 active orbitals, TZVP basis, ground-state MP2/6-31G/ geometry. e See ref 46. Estimated as 0-0
energy + 0.5 eV. f See ref 41 absorption of jet-cooled OT. g See ref 43. Absorption and emission of jet-cooled OT. h See ref 51. Electron
energy loss of gaseous HT.
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absolute DFT/MRCI energy of the electronic ground state.
(2) TDDFT calculations on the lowest triplet of longer
polyenes are prone to triplet instabilities when the BH-LYP
functional is employed. Interestingly, the influence of the
particular choice of density functional for the geometry
optimization levels off in case of the adiabatic DFT/MRCI
excitation energies. Obviously, a partial cancelation of
geometry effects occurs here.

Fortunately, the sensitivity of the DFT/MRCI energies with
respect to the basis set (Table 6) is much less pronounced
than the geometry dependence discussed above. As already
seen for the polyacenes, an SV(P) basis appears to be
sufficient. The DFT/MRCI method yields the correct order
of low-lying singlet states. Admittedly, the 4.1 eV referred
to as vertical excitation energy of the 2 1Ag state by
McDiarmid46 is only a rough estimate. On the other hand,
we know that the 0-0 energy of the 1 1Bur 1 1Ag transition
is definitely a lower limit of the true vertical excitation
energy. It is therefore clear that the 2 1Ag state is located
below the 1 1Bu state in the FC region or that they are at
most near degenerate. From the ab initio methods only the
CASPT2 finds the 2 1Ag state as the S1 state. The CC3
method, which was employed by Schreiber et al.17 for
benchmark reasons only and is too expensive to be used in
practical applications on large polyenes, obtains near de-
generacy of the 1 1Bu and 2 1Ag states whereas the less
demanding CC2 approach places the 2 1Ag more than 1.1
eV above the 1 1Bu state. Similarly large energy gaps with
the wrong ordering of states are found for (TD)DFT
treatments using hybrid functionals.4

Decapentaene. For all-trans-1,3,5,7,9-decapentaene, less
experimental data are available. Vibrationally resolved
fluorescence and one-photon excitation as well as TPA have
been recorded in glassy n-alkanes.55 A reliable estimate of
the S1 and S2 origins was presented by D’Amico et al.69 The
formula which they employed for the extrapolation, ν(sol-
vent) ) ν(gas) - k(n2 - 1)/(n2 + 2) where k is a fitting
parameter and n is the refractive index of the solvent, yielded
results in good agreement with gas phase data in the case of
OT and the S2 state of DP.

The DFT/MRCI results obtained for different AO bases
(Table 7) are consistent with the findings in HT and OT.

The vertical excitation energies are systematically lower than
the CASPT2 results by Nakayama et al.,14 but trends are
well reproduced. A comparison with experiment can be made
only for the adiabatic transitions between the ground state
and the two lowest singlet excited states. The estimated S1

and S2 energies of isolated DP are underestimated by about
0.4 eV in this case, but the energy gap is in the right ballpark.

3.1.3. R, ω-Diphenyl-Polyenes. Similar trends are found
for the short R, ω-diphenyl-polyenes, 1,6-diphenyl-trans,
trans-1,3,5-hexatriene (DPHT), 1,8-diphenyl-all-trans-1,3,5,7-
octatetraene (DPOT), 1,10-diphenyl-all-trans-1,3,5,7,9-
decapentaene (DPDP), and 1,12-diphenyl-all-trans-1,3,5,7,9,11-
dodecahexaene (DPDH). At first sight (Table 8), one might
think that the deviations from the experimental excitation
energies of the 1 1Bur 1 1Ag transition are smaller. However,
for these molecules, only spectra in the condensed phase have
been measured7,70-74 and solvent effects are known to
preferentially stabilize the 1 1Bu state. In CS2, a highly
polarizable agent, even an inversion of the 1 1Bu and 2 1Ag

levels has been observed.73

With regard to the cost of calculations on carotenoids, we
investigated the basis set dependence and the sensitivity with
respect to the density functional used for the geometry
optimization. The same trends as for the short linear polyenes
are found: The changes are very small when proceeding from
the TZVPP basis over the TZVP basis to the SV(P) basis,
whereas red shifts of the order of 0.1-0.2 eV are observed
when the B-LYP geometry is employed instead of the B3-
LYP geometry of the ground state. Detailed results are
provided in Table 2 of the SI.

3.2. Longer Polyenes. From our benchmark results on
shorter polyenes, R, ω-diphenyl-polyenes, and polyacenes
and from recent results of the Thiel group,17 we expect the
DFT/MRCI energies at the B3-LYP optimized geometries
to systematically underestimate the true energies of the
electronically excited states. We did, however, not observe
a bias toward one or the other type of state. It can therefore
be expected that the energy gaps between the electronically
excited states are reproduced well. Information on the
performance of the DFT/MRCI method with respect to CPU
time and on the number of CSFs included in the final MRCI
space is available in the SI.

Table 7. Calculated Vertical Absorption Energies ∆Evert and Adiabatic Excitation Energies ∆Eadia [eV] of DP in Comparison
with Previous Theoretical Results of Correlated ab initio Wave Function Methods and Experimental Values

∆Evert

(DFT/MRCI) CASPT2a
∆Eadia

(DFT/MRCI)

state SV(P) TZVP TZVPP SV(P) TZVP ∆E0-0

2 1Ag 3.40 3.44 3.46 3.95 2.68b 2.71b 3.07c, 3.05d, 3.10e

1 1Bu 3.82 3.77 3.74 3.97 3.61 3.54 3.57f,g, 3.98e, 4.02h

2 1Bu 4.55 4.57 4.59 4.91
3 1Ag 5.38 5.32 5.31 5.64
1 3Bu 1.73 1.76 1.77 1.95 1.28 1.37
1 3Ag 2.82 2.82 2.84 3.02
2 3Bu 3.85 3.83 3.86 4.07
2 3Ag 4.65 4.59 4.63 4.86
3 3Bu 4.69 4.70 4.73 4.97

a See ref 14. CASPT2 based on CASSCF with 10 active electrons in 10 active orbitals, (3s2p1d/2s) basis, and experimental geometry
parameters. b Energy at the 1 3Bu minimum. c See ref 92. Two-photon absorption in n-heptane at 77 K. d See ref 92. Two-photon absorption
in n-decane at 77 K. e See ref 69. 0-0 band measured in various solvents, corrected for solvent shifts. f See ref 92. Absorption and
emission in n-heptane at 77 K. g See ref 92. Absorption and emission in n-decane at 77 K. h See ref 69. Origin of gas phase absorption.

1508 J. Chem. Theory Comput., Vol. 4, No. 9, 2008 Marian and Gilka



3.2.1. Vertical Excitation at the Ground State Geometry.
The ground-state equilibrium structure is characterized by
alternating double and single bonds wherein the bond length
alternation is largest at the polyene ends and decreases
slightly toward the center (Figure 5, top). The 1 3Bu state,
which is dominated by the (HOMO f LUMO) single
excitation, constitutes the lowest excited state in all polyenes.
In the simple model of 2N independent electrons in a one-
dimensional box of width L the excitation energy is given
by the HOMO-LUMO orbital energy gap which is propor-
tional to (2N + 1)/L2. It is customary to assume that the
box potential extends further than the distance between the
first and last carbon atom which is approximately equal to
(2N - 1) times the average C-C bond length RCC. Adding
one bond length on either side of the polyene chain yields
an estimate for the box width L ∝ (2N + 1)RCC. Within this
model, a straight line would result if the vertical excitation
energy is plotted as function of 1/(2N + 1). It is seen (Figure
6) that the excitation energies of the T1 state nicely follow
this simple scheme. The T2 state, which comes next in the

vertical excitation spectrum, possesses 3Ag symmetry and has
two leading configurations, (HOMO - 1 f LUMO) and
(HOMO f LUMO + 1). With regard to its conjugation
length dependence, a steeper slope and a larger deviation
from linearity is observed in comparison to the T1 state. This
effect is even more pronounced for the corresponding singlet
state, 2 1Ag. In addition to the above-mentioned (HOMO -
1f LUMO) and (HOMOf LUMO + 1) single excitations,
double excitations contribute to the CI expansion with high
weight wherein the (HOMO f LUMO)2 configuration is
the leading term, in accord with earlier semiempirical
calculations.9,10 For the longer polyenes, also significant
admixture with the double excitation (HOMO - 1, HOMO
f LUMO, LUMO + 1) and the ground-state configuration
is found. According to our calculations, this multiconfigu-
rational expansion yields the lowest excited singlet state in
all linear polyenes with N g 3, in agreement with experi-
mental evidence.7,8 Calculated vertical excitation energies
of the S1 state and the optically bright 1Bu state, which results
mainly from the (HOMO f LUMO) single excitation, can
be found in Table 9. For all but the longest polyenes, the
latter state is the second excited state at the ground-state

Table 8. DFT/MRCI Vertical Excitation Energies ∆Evert and Adiabatic Excitation Energies ∆Eadia [eV] of
R, ω-Diphenyl-polyenes in Comparison with Experimental Band Originsa

∆Evert (DFT/MRCI) ∆Eadia (DFT/MRCI)

molecules SV(P) TZVP SV(P) TZVP ∆E0-0

2 1Ag stateb

DPHT 3.47 3.51 2.86 2.87 3.19c, 3.12d

DPOT 3.00 3.05 2.42 2.44 2.80e, 2.77d,f

DPDP 2.64 2.70 2.08 2.11 2.50g

DPDH 2.35 2.42 1.84 1.84 2.26g

1 1Bu state
DPHT 3.36 (2.21) 3.34 (2.18) 3.15 3.10 3.62c, 3.22d, 3.23d

DPOT 3.08 (2.66) 3.07 (2.65) 2.88 2.85 3.01e, 2.96d, 3.02f

DPDP 2.85 (3.08) 2.85 (3.09) 2.66 2.64 2.86g

DPDH 2.66 (3.48) 2.67 (3.50) 2.47 2.46 2.72g

1 3Bu state
DPHT 1.78 1.81 1.38 1.39 1.50h

DPOT 1.56 1.59 1.17 1.19
DPDP 1.39 1.43 1.02 1.04
DPDH 1.25 1.29 0.89 0.91

a Oscillator strengths for dipole-allowed transitions from the ground state are displayed in parentheses. b DFT/MRCI excitation energy at
the 1 3Bu minimum. c See ref 73. Extrapolated vacuum origin. d See ref 71. Two-photon absorption at 77 K in EPA. e See ref 7. Emission
spectrum recorded at 4.2 K in pentadecane. f See ref 70. Two-photon absorption at 77 K in EPA. g See ref 72. Excitation (1 1Ag f 1 1Bu)
and fluorescence (2 1Ag f 2 1Ag) spectra recorded at 4.2 K in n-decane (DPDP) or n-dodecane (DPDH). h See ref 74. Triplet excitation
spectra of DPHT crystals at 20 K.

Figure 3. C-C bond lengths of trans,trans-1,3,5,7-octatet-
raene in the 1 1Ag electronic ground state (left), the first excited
triplet state 1 3Bu (middle), and the optically bright 1 1Bu state
(right). Calculated values are represented by circles (B3-LYP,
SV(P) basis), plus signs (B3-LYP, TZVP basis), and hexagons
(B3-LYP, TZVPP basis). Squares correspond to experimen-
tally derived values determined from X-ray studies on crystal-
line OT.68

Figure 4. Calculated C-C bond lengths (circles: B3-LYP,
SV(P) basis; plus signs: B3-LYP, TZVP basis) of all-trans-
1,3,5,7,9-decapentaene in the 1 1Ag electronic ground state
(left), the first excited triplet state 1 3Bu (middle), and the
optically bright 1 1Bu state (right).
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geometry. As discussed before, 1 1Bu is nearly degenerate
with the 2 1Ag state and the 2 3Bu state in the vertical
excitation spectrum of HT. The second singlet and triplet
Bu states, symbolized by circles in Figure 6, and the third
triplet Bu, symbolized by upside down triangles, have
similarly strong multiconfigurational character as the 2 1Ag

state. In the shorter polyenes the (HOMO - 2 f LUMO),
(HOMO f LUMO + 2), and (HOMO - 1 f LUMO + 1)
dominate these states while in the longer polyenes the doubly
excited (HOMO - 1, HOMOf LUMO2) and (HOMO2f
LUMO, LUMO + 1) gain weight and become predominant
in the 2 1Bu and 3 3Bu states. It is noteworthy that the order
of the 1Bu states changes with conjugation length. The
optically bright 1Bu state, frequently labeled 1Bu

+ in the
literature wherein the + sign represents the so-called Pariser
alternancy symmetry,75 is the second excited state in the
vertical excitation spectrum of short polyenes. According to
our calculations, it becomes nearly degenerate with the
second 1Bu state, also denominated 1Bu

- in the literature,
for N ) 11 while 1Bu

+ represents the third excited singlet

state for longer polyenes. As we will see below, the location
of the crossover is geometry dependent though. Let us finally
turn to the 2 3Ag and 3 1Ag states which are the last ones
that we have analyzed in detail. At the ground-state geometry,
the 2 3Ag state is mainly composed of the single excitations
(HOMO - 3 f LUMO), (HOMO - 2 f LUMO + 1),
(HOMOf LUMO + 3), and (HOMO - 1f LUMO + 2).
The corresponding singlet, 3 1Ag, has significant contributions
from the double excitations (HOMO - 2, HOMO f
LUMO2) and (HOMO2 f LUMO, LUMO + 2) which
become the leading terms in the longer polyenes.

3.2.2. Geometry Relaxation in the T1 State. In the T1 state,
a reversal of single and double bond character is observed
in the central parts of the polyenes (see Figures 2-4 for HT,
OT, and DP, respectively, Figure 5 for all-trans-1,3,5,7,
9,11,13,15,17,19,21,23,25-hexacosatridecaene (HCTD), and
the SI for all other polyenes). The differences between
alternating bond lengths become smaller when proceeding
outward until subsequent bonds are nearly equal. This inner
region comprises N - 2 bonds for odd N and N - 1 bonds
for even N. Execpt for HT, which is too short to comply
with this pattern, the inner region is followed by two (in the
polyenes with even N) or three (in the polyenes with odd N)
nearly equally long bonds. In the outer part, the bond
alternation resembles the one in the ground state so that the
terminal bond is always a short one, again except for the
smallest members HT, OT, and DP.

This pattern was controversially discussed in the literature.
Early studies by Kuki at al.76 based on semiempirical
Pariser-Parr-Pople single and double CI (SDCI) calcula-
tions observed strong bond alternation at the terminating
carbon atoms and a loss of it in the central part of the polyene

Figure 5. Calculated C-C bond lengths (B3-LYP, SV(P)
basis) of all-trans-1,3,5,7,9,11,13,15,17,19,21,23,25-hexaco-
satridecaene in the 1 1Ag electronic ground state (top), the
first excited triplet state 1 3Bu (middle), and the optically bright
1 1Bu state (bottom).

Figure 6. DFT/MRCI vertical electronic excitation energies
of all-trans-polyenes at the respective 1 1Ag ground-state
minimum geometry as functions of the conjugation length N.
Filled symbols and solid lines correspond to singlet states,
and open symbols and dashed lines, to triplet states. Squares,
hexagons, and upside triangles symbolize Ag symmetric
states; diamonds, circles, and upside down triangles symbol-
ize Bu states.
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chain instead. The authors related this central domain of
diminishing bond alternation to bond orders and postulated
a “triplet-excited” region. Subsequent investigations by
Takahasi et al.77,78 pointed out the deficiencies in this
approach: Their single-excitation CI (SCI) calculations on
the series of polyenes from C8H18 to C22H46 yielded
geometries in agreement with Kuki et al. However, com-
parison calculations with CASSCF on octatetraene gave a
considerably different bond alternation pattern which is
consistent with our present calculations. Takahashi et al.
concluded the appearance of the postulated “triplet-excited
region” to be artifactual in SCI and SDCI calculations, related
to the use of RHF MOs in combination with limitations on
the excitations in the CI space. Consideration of the higher
polyenes employing this method was not feasible, however.
Geometry optimizations by Ma et al.79,80 focusing on an
assessment of the semiempirical Pariser-Parr-Pople model
as well as providing results obtained with the UB3LYP
method observed a bond alternation pattern which was
qualitatively consistent with our study.

Inspection of the T1 geometry pattern poses the question
of a possible electron localization in the two regions of
diminishing bond length. While Kuki et al. related their
(erroneously established) domain of diminishing bond al-
ternation to bond orders, Takahashi et al. as well as Ma et
al. refrained from further conclusions in this respect in their
later work, confining themselves to an observation of
geometrical effects. Current work in our group concerning
this particular question is underway.

The geometry relaxation effect on the excitation energies
(Figure 7) is quite dramatic for some of the states as may be
expected for a bond-order reversal in the central part of the
chromophore. For the short polyenes, the energy gain in the
1 3Bu state is of the order of 0.5 eV and drops to 0.32 eV in
HCTD. Calculated vertical and adiabatic excitation energies
of the T1 states of all polyenes are presented in Table 9. While
the destabilization of the ground-state energy is rather strong
for the short members, the effect levels off for the long
polyenes. States which exhibit large expansion coefficients
for configurations with doubly occupied LUMO (2 1Ag, 1Bu

-,
3 1Ag, 3 3Bu) experience huge stabilization effects. Qualita-
tively this can be understood from the fact that the electron
density in the LUMO is large for those bonds which

correspond to short bonds in the T1 statesat least in the
central part of the chromophore. This stabilization of
(LUMO)2 occupations leads, for example, to the strange
situation that the 2 1Ag state drops below the 1 3Ag state.
Actually, the latter is slightly shifted to higher energies at
the T1 geometry. A further effect of the pronounced stabiliza-
tion of the 1Bu

- state is the significantly earlier crossover with
the optically bright 1Bu

+ state which occurs already for N )
6 at the relaxed T1 geometry. Inspite of its (HOMO f
LUMO) character, the latter state is only slightly affected
by the geometry relaxation in its triplet coupled counterpart.
The reason for this behavior will become clear in the next
section. Finally, for the longest polyenes (N > 11) we
observe even a drop down of the 3 1Ag state below the 1Bu

+

state. Although it will be more meaningful to check the order
of states at the relaxed 1Bu

+ geometry (see following section),

Table 9. Vertical Absorption ∆Eabs and Emission ∆Eem Energies As Well As Adiabatic Excitation Energies ∆Eadia [eV] of
Linear Polyenes with Conjugation Length Na

2 1Ag 1 1Bu/2 1Bu
b 1 3Bu

N ∆Eabs ∆Eem
c ∆Eadia

c ∆Eabs (f(r)) ∆Eem (f(r)) ∆Eadia ∆Eabs ∆Eem ∆Eadia

3 4.95 3.60 4.07 5.07 (1.39) 4.59 (1.33) 4.21 2.46 1.43 1.90
4 4.02 2.85 3.25 4.33 (1.82) 3.96 (1.77) 4.10 2.02 1.13 1.53
5 3.40 2.34 2.68 3.82 (2.24) 3.50 (2.20) 3.61 1.73 0.94 1.28
6 2.92 1.96 2.26 3.43 (2.64) 3.15 (2.60) 3.23 1.52 0.80 1.10
7 2.56 1.68 1.93 3.14 (3.02) 2.89 (2.98) 2.95 1.36 0.70 0.96
8 2.29 1.46 1.68 2.90 (3.40) 2.67 (3.15) 2.72 1.24 0.64 0.86
9 2.06 1.30 1.50 2.70 (3.76) 2.50 (3.72) 2.53 1.14 0.58 0.78
10 1.88 1.18 1.35 2.54 (4.11) 2.35 (4.08) 2.37 1.07 0.54 0.71
11 1.72 1.08 1.22 2.40 (4.30) 2.22 (4.44) 2.23 1.00 0.52 0.66
12 1.60 1.01 1.12 2.29 (4.78) 2.11 (4.79) 2.10 0.95 0.51 0.62
13 1.49 0.94 1.03 2.18 (5.10) 2.01 (5.14) 2.00 0.91 0.50 0.59

a Oscillator strengths f(r) of symmetry-allowed vertical transitions are displayed in parentheses. b Ground state geometry: 1 1Bu for N e
10, 2 1Bu for N g 11; excited-state geometry 1 1Bu for N e 7, 2 1Bu for N g 8. c Relaxed geometry corresponds to the 1 3Bu minimum.

Figure 7. DFT/MRCI vertical electronic excitation energies
of all-trans-polyenes at the first excited triplet 1 3Bu (HOMO
f LUMO) minimum geometry as functions of the conjugation
length N. The DFT/MRCI energy of the respective 1 1Ag

ground-state minimum has been chosen as energy offset. For
an explanation of symbols, see Figure 6.
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it is interesting to notice that a conical intersection between
the two states occurs not far from the 1Bu

+ minimum.
3.2.3. Geometry Relaxation in the 1Bu

+ State. Although
both the T1 and the 1Bu

+ states are dominated by the (HOMO
f LUMO) single excitation, relaxation of the nuclear
coordinates leads to quite different equilibrium structures.
We saw above that single and double bonds localize in the
T1 state in three different regions, i.e., the central and the
two terminal parts of the polyene. These regions are separated
by short sequences of C-C bonds where the bond alternation
changes. In the 1Bu

+ state, double bond character is found
for the terminal bonds, too, but in the central part of the
polyene, bond lengths are nearly equalized (Figure 5). This
bond length equalization is actually what one might have
expected from a simple Walsh-type analysis of this electronic
excitation. According to Walsh, the geometric parameters
of a molecule correlate with the trends for the frontier orbital
energies upon nuclear distortion.81 The (N - 1) nodes of
the HOMO are placed where the LUMO exhibits maximal
amplitudes and vice versa. In the 1, 3Bu

+ states, the HOMO
and LUMO are singly occupied each and single and double
bond character should thus level out.

The energy gain of the 1Bu
+ state upon geometry relaxation

to the minimum is of the order of 0.3 eV in the short polyenes
and about 0.2 eV in the long ones (Table 9). The energies
of the 1Bu

+ states at the respective T1 geometries are only
slightly less favorable. Together these facts indicate that the
1Bu

+ potential energy hypersurfaces (PEHs) of the longer
polyenes are rather flat with respect to synchronous, but
antiphase distortions of neighboring C-C bond lengths. We
note in passing that a similar observation is made for the
electronic ground states of the long polyenes which mix in
non-negligible amounts of (HOMO f LUMO)2 character.
Their absolute DFT/MRCI energies are nearly identical at
the S0 and 1Bu

+ minimum geometries. The data in Table 9
show that the difference between the adiabatic excitation
energies of the 2 1Ag

- and 1Bu
+ state increases with the

conjugation length and becomes nearly constant for the
longer polyenes. Experimental energy differences that were
corrected for solvent effects, have been published for
octatetraene (0.791 eV), decapentaene (0.874 eV), and
dodecahexaene (0.920 eV).69 Our corresponding calculated
values of 0.85, 0.93, and 0.97 eV are in the right ballpark
and reflect the experimental trends. Also the calculated
energy gap for N ) 11, 12, 13 (roughly 1 eV) is in good
agreement with the estimated long-chain limit of 7168 cm-1

(0.89 eV).82

Since there is no reversal of single- and double-bond
character in the 1Bu

+ state, the energies of states that are
characterized by a doubly occupied LUMO are less dramati-
cally affected by the geometry relaxation than at the T1

geometry. The stabilization of the 1Bu
- state is sufficient,

however, to cause a crossover between N ) 8 and N ) 9
where both states are near-degenerate. This near-degeneracy
of states should manifest itself in perturbations in the spectra
of these polyenes. It has to be noted, however, that the
position of the intersection may vary with the solvent
polarizability since the 1Bu

+ state is known to exhibit strong
solvatochromic shifts. Actually, indications of such a near-

degeneracy have been observed recently in femtosecond-
resolved spectra of lutein, a pigment with 10 conjugated
double bonds.83 For carotenes with conjugation lengths N
g 9, the presence of the 1Bu

- state intermediate between 21Ag
-

and 1Bu
+ has been postulated by several authors to assign

resonance-Raman spectra or to explain the intricate relaxation
dynamics of these compounds in femtosecond spectros-
copy.84-90

3.2.4. Excited State Absorption. The longer polyenes show
strong ESA and are thus interesting candidates for optical
limiting. Triplet ESA will not be discussed here (although it
is strong) because the triplet quantum yields of polyenes are
known to be very small.

The excitation energies and oscillator strengths originating
from the S1 (2 1Ag) state are collected in Table 10 for both
the ground-state and the relaxed excited-state geometries.
The strong geometry dependence of the transition energy
and intensity of the first ESA band (2 1Ag f 1 1Bu in short
polyenes, 2 1Ag f 2 1Bu in the longer ones) is noteworthy.
Inparticular for thelongpolyenes theuseof theFranck-Condon
approximation for the modeling of this ESA band appears
questionable. The calculated ESA wavelengths of the longer
polyenes are slightly smaller than half the laser wavelengths
required for the 1 1Ag f 2 1Ag TPA, even if the systematic
errors of the DFT/MRCI 2 1Ag excitation energies are taken
into account. However, the energetic location of the upper
1Bu

+ state could be tuned into resonance by an appropriate
choice of environment.

The very strong ESA in the visible and UVA range is due
to (LUMO f LUMO + 1) excitations from S1 to a higher,
multiconfigurational 1Bu state. In HT and OT, these excita-
tions are spread over two valence 1Bu states, but for the longer
members of the series, the intensity is concentrated in a single
transition. The numbering of the upper states may change
upon geometry variation. At the relaxed S1 geometry the
upper state corresponds to 4 1Bu. While its transition
frequency is less sensitive to geometry relaxation, we find a
marked decrease of its oscillator strength. Energetically, it
overlaps with the strong 1 1Ag f 1 1Bu

+ one-photon
absorption and will thus be difficult to observe in experiments
with low time resolution.

Some polyenes fluoresce from the 1 1Bu
+ (S2/S3) state.

Therefore, ESA data have been computed for this state, too
(Table 11). Huge oscillator strengths are found for an ESA
transition in the visible to near-infrared spectral region. The
upper 1Ag state represents a (LUMO f LUMO + 1)
excitation with respect to the 1 1Bu

+ state. It drifts from 4
1Ag in HT to 6 1Ag in the longer polyenes, but retains its
electronic structure. A similar observation was recently made
by Mikhailov et al.91 who employed SAC-CI and an a
posteriori TDA method in combination with the B3-LYP
functional.

Although the oscillator strengths for 1 1Bu
+ f 6 1Ag are

larger than for the primary 1 1Agf 1 1Bu
+ absorption, it will

be difficult to reach a population inversion because the
excitation energies do not match. Whether a tuning by solvent
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effects is possible here cannot be concluded from the present
data since the behavior of the upper state is not known.

Conclusions

The purpose of the present theoretical study was a critical
assessment of the DFT/MRCI method in notoriously difficult

cases where TDDFT in combination with standard function-
als fails. In addition, the effects of various technical
parameters of the calculations on the properties of the
electronic states were thoroughly investigated.

The first of these cases is the position of the 1La

(HOMO-LUMO) transition in polyacenes. The DFT/MRCI
energies follow the experimental trends with a tendency of
slightly underestimating the true 1La and 1Lb excitation
energies. Their accuracy is comparable to the one of the
considerably more expensive ab initio CC2 method which
overestimates the experimental values by approximately the
same amount.

Static electron correlation in the multiconfigurational 2 1Ag

state of linear polyenes and R, ω-diphenyl-polyenes is
typically severely underrated by single-reference response
methods such as TDDFT and CC2 with the result that the
order of the 2 1Ag and 1 1Bu states is reversed in these
calculations. The energy gap between these states is repro-
duced correctly by the DFT/MRCI method, but again the
absolute excitation energies are somewhat too low. In linear
polyenes with conjugation lengths 8 to 11 an interesting
phenomenon is observed in the calculations. Upon geometry
relaxation in the primarily excited 1Bu

+ state the multicon-
figurational 1Bu

- state is stabilized to an extent that an
intersection between the corresponding potential energy
hypersurfaces takes place. In polyenes with conjugation
lengths 12 and 13, the 1Bu

- state represents the S2 state already
in the Franck-Condon region. In the latter compounds, even
the 3 1Ag drops down below the 1Bu

+ state. The presence of
conical intersections between the optically bright 1Bu

+ state
and dark singlet states lays the ground for the supposition
that internal conversion after photoexcitation is extremely
fast in the longer polyenes. Excited state absorption wave-

Table 10. Singlet Excited State Absorption Bands ∆EESA [eV] of Linear Polyenes with Conjugation Length Na

∆EESA (f(r))

N 1 1Bu 2 1Bu 3 1Bu 4 1Bu 5 1Bu 6 1Bu

2 1Ag state, FC region
3 0.13 1.24 3.32 (0.16) 3.98 (0.65) 5.01 (0.01) 5.99
4 0.31 (0.01) 1.26 3.38 (0.74) 3.64 (0.56) 3.65 4.67 (0.01)
5 0.42 (0.01) 1.15 2.52 3.14 (1.64) 3.36 (0.12) 3.40
6 0.51 (0.02) 1.04 2.52 2.89 (2.13) 3.07 (0.03) 3.18 (0.01)
7 0.57 (0.03) 0.94 2.42 2.67 (2.51) 2.77 (0.03) 3.00
8 0.61 (0.04) 0.86 2.27 2.48 (2.60) 2.51 (0.31) 2.84
9 0.64 (0.05) 0.79 2.14 2.29 (0.03) 2.34 (3.25) 2.70
10 0.66 (0.07) 0.72 2.00 2.10 2.21(3.62) 2.57
11 0.67 0.68 (0.09) 1.87 1.93 2.09 (3.97) 2.46
12 0.62 0.69 (0.11) 1.75 1.80 2.00 (4.30) 2.36
13 0.58 0.69 (0.14) 1.65 1.68 1.91 (4.60) 2.27

1 1Bu 2 1Bu 3 1Bu 4 1Bu 5 1Bu 6 1Bu

2 1Ag state, relaxedb

3 0.79(0.02) 1.46 3.97(0.30) 4.97(0.55) 5.38 6.62(0.01)
4 0.92(0.04) 1.33 3.83(0.97) 4.16(0.01) 4.58(0.37) 4.99
5 1.00(0.06) 1.20(0.01) 2.69 3.51(1.52) 3.96 4.26(0.24)
6 1.05(0.04) 1.09(0.06) 2.56 3.21(1.95) 3.60 4.00(0.18)
7 0.95 1.11(0.15) 2.43 2.97(2.29) 3.26 3.36
8 0.84 1.13(0.21) 2.25 2.75(2.56) 2.99 3.21
9 0.75 1.14(0.28) 2.08 2.56(2.82) 2.76 3.12
10 0.67 1.14(0.36) 1.92 2.41(3.02) 2.56 2.98
11 0.60 1.14(0.44) 1.77 2.28(3.17) 2.38 2.83
12 0.53 1.13(0.53) 1.64 2.16(3.31) 2.23 2.67
13 0.48 1.12(0.61) 1.52 2.06(3.41) 2.09(0.02) 2.52

a Oscillator strengths are displayed in parentheses. b DFT/MRCI excitation energies and oscillator strengths at the 1 3Bu minimum.

Table 11. Singlet Excited State Absorption Bands ∆EESA

[eV] of Linear Polyenes with Conjugation Length Na

∆EESA (f(r))

N 3 1Ag 4 1Ag 5 1Ag 6 1Ag

1 1Bu state for N e 10, 2 1Bu for N g 11, FC region
3 2.09 2.94 (1.11) 3.12 (0.95) 4.86
4 1.67 1.82 2.45 (0.85) 2.64 (2.02)
5 1.56 1.60 (0.01) 2.02 (0.35) 2.30 (3.28)
6 1.36 (0.01) 1.42(0.01) 1.64 (0.13) 2.02 (4.22)
7 1.16 (0.01) 1.27 (0.02) 1.34 (0.07) 1.81 (4.96)
8 0.99 (0.01) 1.10 (0.06) 1.16 1.65 (5.66)
9 0.83 0.90 (0.05) 1.06 1.50 (6.31)
10 0.70 0.75(0.04) 0.98 (0.01) 1.39 (6.92)
11 0.59 0.63(0.04) 0.91 (0.01) 1.29 (7.26)
12 0.50 0.53(0.03) 0.85 1.21 (8.12)
13 0.42 0.44 (0.03) 0.79 (0.01) 1.14 (8.67)

3 1Ag 4 1Ag 5 1Ag 6 1Ag

1 1Bu state for N e 7, 2 1Bu for N g 8, relaxed
3 2.23(0.01) 2.58(1.50) 2.91(0.47) 5.11
4 1.41(0.01) 1.93(0.03) 2.27(1.88) 2.44(0.89)
5 1.28(0.02) 1.69(0.04) 1.89(0.36) 2.06(3.16)
6 1.08(0.02) 1.51(0.06) 1.52(0.09) 1.82(4.13)
7 0.90(0.02) 1.23(0.04) 1.36(0.05) 1.63(4.86)
8 0.72(0.02) 1.00(0.02) 1.24(0.05) 1.48(5.25)
9 0.57(0.02) 0.81(0.01) 1.13(0.05) 1.35(6.22)
10 0.45(0.01) 0.66(0.01) 1.05(0.06) 1.24(6.84)
11 0.34(0.01) 0.53 0.97(0.05) 1.15(7.44)
12 0.26(0.01) 0.44 0.92(0.07) 1.08(8.01)
13 0.19(0.01) 0.35 0.86(0.05) 1.01(8.57)

a Oscillator strengths are displayed in parentheses.

Performance of the DFT/MRCI Method J. Chem. Theory Comput., Vol. 4, No. 9, 2008 1513



lengths and intensities are found to depend strongly on the
nuclear geometry. In the gas phase, the wavelengths for ESA
from the first excited singlet to the 1Bu

+ do not match with
the laser wavelengths used for its two-photon excitation from
the ground state. Due to its solvatochromism, the energetic
location of the upper state could be tuned into resonance by
an appropriate choice of environment, however.

With regard to the treatment of large π-systems it is
encouraging that the reduction of the basis set quality from
TZVPP over TZVP to SV(P) has almost no effect on the
excitation energies and oscillator strengths. A more critical
parameter is the ground-state equilibrium nuclear arrange-
ment, at least in case of the polyene chains. As exemplified
for trans,trans-1,3,5,7-octatetraene, where an experimental
crystal structure is known, only the Hartree-Fock method
yields C-C bond distances close to the experimental ones,
most certainly due to a fortuitous error cancelation. All
correlated methods applied (including the density functionals
B-LYP, B3-LYP, and BH-LYP as well as the RIMP2, MP2,
and CASSCF wave function approaches) underestimate the
bond length alternation in the central part of the chro-
mophore. These geometric deficiencies introduce a bias in
favor of the electronically excited states of the polyenes, since
the C-C bond length alternation is less pronounced or even
reversed in the latter, offering an explanation for the fact
that the DFT/MRCI electronic excitation energies of linear
polyenes and R, ω-diphenyl-polyenes are consistently too low
while the energy gaps between the excited states are
reproduced well.
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Abstract: In this work we propose a straightforward and efficient approach to improve accuracy
and convergence of free energy simulations in condensed-phase systems. We also introduce
a new accelerated Molecular Dynamics (MD) approach in which molecular conformational
transitions are accelerated by lowering the energy barriers while the potential surfaces near the
minima are left unchanged. All free energy calculations were performed on the propane-to-
propane model system. The accuracy of free energy simulations was significantly improved
when sampling of internal degrees of freedom of solute was enhanced. However, accurate and
converged results were only achieved when the solvent interactions were taken into account in
the accelerated MD approaches. The analysis of the distribution of boost potential along the
free energy simulations showed that the new accelerated MD approach samples efficiently both
low- and high-energy regions of the potential surface. Since this approach also maintains
substantial populations in regions near the minima, the statistics are not compromised in the
thermodynamic integration calculations, and, as a result, the ensemble average can be recovered.

Introduction

Free energy is probably the most important quantity in
thermodynamics and one of the central topics in biophysics.1,2

Nevertheless, for many relevant systems with local
minimum energy configurations separated by energy
barriers, efficient and accurate calculation of this property
is still a big challenge in computational chemistry. Free
energy differences between different states can be calcu-
lated through Free Energy Perturbation (FEP) and Ther-
modynamic Integration (TI) methods.3-10 Since the first
application of the methodology to the calculation of the
relative free energies of ligand binding and solvation of
the organic molecules methanol and ethane,1,8 FEP and
TI have been widely used to study a wide range of
processes such as solvation, phase transitions, ligand
binding, and protein-protein interactions, just to name a
few.5,11-14 These methods, which are firmly rooted in
statistical mechanics, are usually combined with molecular
dynamics (MD) or Monte Carlo (MC) simulations.15,16

The data obtained from these simulations allows us to
quantitatively evaluate free energy changes and under-
stand, at molecular level, the structural and energetic
factors governing the process.* Corresponding author e-mail: cesar@mccammon.ucsd.edu.

Figure 1. Schematic representation of a hypothetical true
(solid line) and modified (dashed line) potential energy function
with different values of R. The modified potential (generated
with eq 1) converges to the true potential at large values of
R. The dotted line corresponds to the boost energy E.
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However, to obtain accurate free energy values, major
issues like free energy convergence and conformational
sampling still need to be addressed. Although these topics
have been mainly discussed as independent issues, conver-
gence and the amount of sampling are strictly connected.17

For instance, for processes that involve large conformational
changes and reorganization of solvent, poor sampling can
trap the system in local minima and, as a consequence, lead
to apparent but false convergence. In other words, in these
cases the calculated free energy might correspond to
pseudoconverged values obtained from trapped local con-
formations. As we will show in this paper, even for a very
simple system, like propane-to-propane transformation,

independent free energy calculations carried out with con-
ventional MD simulation may not be able to reproduce
accurately the correct free energy difference, though the
simulations may show apparently converged values. Quan-
titative prediction of free energy change is only obtained
when configuration sampling is efficiently improved.

A large number of techniques have been introduced to
enhance sampling over configuration space.18-32 A straight-
forward way of modifying the potential energy surface to
enhance sampling has been proposed by Hamelberg et al.33

This approach, which is based on earlier work of Voter,34,35

has proved to be efficient in accelerating not only confor-
mational transitions36-39 but also millisecond time scale
motions of a protein in explicit water.40

In this work we propose a simple and efficient approach
to improve accuracy and convergence of free energy simula-
tions in condensed-phase systems. The main idea is to
integrate the accelerated MD approach with free energy
simulations. Although the formulation and the results pre-
sented here were obtained by coupling TI with the accelerated
MD method (aMD), the procedure can be easily extended
to the FEP approach. To check convergence and accuracy
of the TI simulations, all calculations were performed on
the propane-to-propane system. This system was chosen
because i) the correct free energy result is rigorously equal
to zero and ii) similar “zero-free energy change” systems
have been used before as model systems to compare the
efficiency and convergence of different approaches to free
energy calculations.41,42

Theory

In order to enhance sampling by increasing the escape rate
from potential energy wells, the accelerated MD approach
modifies the energy landscape by adding a boost potential,
∆V(r), to the original potential surface every time V(r) is
below a predefined energy level E (Figure 1). In other words,

Figure 2. Schematic representation of a hypothetical true
(solid line) and modified (dashed line) potential energy function
with different values of R. The modified potential (generated
with eq 3) converges to the true potential at large values of
R. The dotted line corresponds to the boost energy E.

Figure 3. Butane molecule.

Figure 4. Plots of dihedral angle of the butane molecule, as defined in Figure 3, sampled with normal MD, aMDtb, and aMDt
approaches.
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V*(r) ) V(r) + ∆V(r). In the Hamelberg et al.33 implemen-
tation, ∆V(r) is given by

∆V(r)) { 0, V(r)gE
(E-V(r))2

R+ (E-V(r))
, V(r) < E

(1)

where R modulates the depth and the local roughness of the
energy basins in the modified potential. Since the torsional
potential governs the rate of sampling of biomolecular
rotameric states, the boost potential has been largely applied
to the torsional term of the potential energy function. This
approach, which will be referred to as aMDt, has been
successfully applied to study several biological systems and
processes.37-39,43,44

More recently, Hamelberg et al. introduced a dual boost
approach in order to efficiently sample both the torsional degrees
of freedom and the diffusive motions.36 In this implementation,
two boost potentials are applied separately to the potential
energy. While the first one is applied only to the torsional terms,
the second one is added to the total potential energy (aMDtT).
The modified potential is given by

V/(r)) {V0(r)+ [Vt(r)+∆Vt(r)]}+∆VT(r) (2)

where ∆Vt(r) and ∆VT(r) are the boost potentials applied to
the torsional terms Vt(r) and the total potential VT(r). V0(r)
is the potential energy excluding contribution from torsional
terms. Both boost potentials are defined according to eq 1.
Here VT(r) is defined as VT(r) ) V0(r) + Vt(r) + ∆Vt(r).

The correct canonical averages of an observable, calculated
from configurations sampled on the modified potential energy
surface, is then fully recovered from the accelerated MD
simulations by reweighting each point in the configuration
space by exp{�[∆V(r)]}. In the dual boost approach, the
boost factor is given by exp{�[∆Vt(r)+∆VT(r)]}.

New Accelerated MD Approach. In this work, a third
approach is introduced in which molecular conformational
transitions are accelerated by lowering the energy barriers,
while the potential surfaces near the minima are left
unchanged. The idea behind this approach has been used
before by Darve et al. to calculate free energies by applying
a scale-force molecular dynamics algorithm.27

Owing to the symmetry of eq 1 in relation to E and V(r),
this approach can be easily implemented by simply redefining
eq 1 as

∆V(r)) { (V(r)-E)2

R+ (V(r)-E)
, V(r)gE

0, V(r) < E
(3)

In this implementation, the boost potential, ∆V(r), is
subtracted from the true potential V(r) whenever the potential

Figure 5. Propane-to-propane transformation. DH stands for
dummy atoms.

Figure 6. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.

1518 J. Chem. Theory Comput., Vol. 4, No. 9, 2008 de Oliveira et al.



V(r) is greater than the boost energy E; in this case, the
simulation is performed on the modified potential V*(r) )
V(r) - ∆V(r). On the other hand, when V(r) is below the
energy level E, the simulation is performed on the true
potential V*(r) ) V(r). Hereafter, this approach will be
referred to as aMDb and aMDtb when applied to the torsional
terms of the potential energy. Figures 1 and 2 illustrate a
schematic representation of a hypothetical one-dimensional
potential modified using eqs 1 and 3, respectively. In both
cases, as R decreases, the modified potential becomes flatter,
and as R increases, the modified landscape asymptotically
approaches the unmodified potential.

In this approach, analogously to Hamelberg et al.’s
implementation, the correct canonical ensemble averages of
an observable are fully recovered by reweighting each
configuration by the Boltzmann factor of the negative of the
boost potential energy, exp{-�[∆V(r)]}. The application of
this schema into the dual boost approach is straightforward.
In this case, eq 2 is simply redefined as V*(r) )
{V0(r)+[Vt(r)-∆Vt(r)]}-∆VT(r), and the boost factor as
exp{-�[∆Vt(r)+∆VT(r)]}. This implementation will be
referred to as aMDtTb.

Coupling Accelerated MD Approach with Thermody-
namic Integration Simulations. Thermodynamic integration
is a commonly used technique to compute the difference in free
energy between two thermodynamic states, which differ from
each other according to their intermolecular or intramolecular
interaction potentials.3,8,12 In this case, the interaction potential
can be expressed as a function of a coupling parameter, λ, that
determines the state of the system.10 Thus, by defining the free
energy, F, as a continuous function of λ, the difference in free
energy between two states is given by

∆F)∫λ)0

λ)1 ∂F(λ)
∂λ

dλ (4)

where λ ) 0 and 1 correspond to the initial and final states,
respectively. Since F(λ) can be written as

F(λ))-kbT ln Q(λ) (5)

∆F can be rewritten as45

∆F)∫-� 1
Q(λ)

∂Q(λ)
∂λ

dλ (6)

where Q is the partition function of the system, � ) 1/kbT,
kb is Boltzmann’s constant, and T is the temperature. Here,
we use the partition function for canonical ensemble, which
is defined as46

QNVT )
1

N!
1

h3N
∫∫drdp exp[-�H(p, r)] (7)

where N is the number of particles, h is Planck’s constant,
p and r are the momenta and positions of the particles, and
H is Hamiltonian of the system. Substituting eq 7 into eq 6
and deriving in respect to λ,45 we obtain

∂F(λ)
∂λ

)
∫∫dpdr

∂Η(p, r)
∂λ

exp[-�Η(p, r)]

∫∫dpdr exp[-�Η(p, r)]
(8)

Assuming that the kinetic energy term is separable and not
dependent on λ, eq 8 can be rewritten in terms of the potential
energy V(r) of the system

∂F(λ)
∂λ

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)]

∫ dr exp[-�V(r)]
(9)

and, finally

∆F)∫λ)0

λ)1 〈 ∂V(r, λ)

∂λ 〉λ
dλ (10)

where the integrand is the ensemble average of ∂V/∂λ calculated
on the original potential V(r) at a specific value of λ, and ∆F
is the free energy difference between the initial (λ ) 0) and
final (λ ) 1) states obtained on the unmodified potential surface,
V(r).

Similarly, for the modified potential we have

∂F(λ)
∂λ

/)
∫ dr

∂V(r)
∂λ

exp[-�V/(r)]

∫ dr exp[-�V/(r)]
(11)

now, the ensemble average of true ∂V(r)/∂λ is performed over
the modified potential V*(r).

Since both approaches can be coupled with TI simulations,
we will first express V*(r) as

V/(r))V(r)+∆V (12)

In this case, eq 11 can be rewritten as

∂F(λ)
∂λ

/)
∫ dr

∂V(r)
∂λ

exp{-�[V(r)+∆V]}

∫ dr exp{-�[V(r)+∆V]}

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)]exp[-�∆V]

∫ dr exp[-�V(r)]exp[-�∆V]
(13)

The Boltzmann distribution can be extracted from the non-
Boltzmann distribution using the method introduced by Torrie et
al.19 The corrected canonical distribution can then be recovered
by reweighting the phase space of the modified potential by
multiplying the integrand by the strength of the bias at each
position, which in this case corresponds to exp[�∆V].

∂F(λ)
∂λ

C

)
∫ dr

∂V(r)
∂λ

exp[-�V(r)] exp[-�∆V] exp[�∆V]

∫ dr exp[-�V(r)] exp[-�∆V] exp[�∆V]
) ∂F(λ)

∂λ

(14)

Thus, the corrected ensemble average of ∆FC can be obtained
by dividing both the numerator and the denominator of eq
11 by ∫dr exp[-�V(r)] exp[-�∆V] ) ∫dr exp[-�V*(r)]

∂F(λ)
∂λ

C

)

∫ dr
∂V(r)
∂λ

exp[-�V(r)] exp[-�∆V] exp[�∆V] ⁄

∫ dr exp[-�V(r)] exp[-�∆V]

∫ dr exp[-�V(r)] exp[-�∆V] exp[�∆V] ⁄

∫ dr exp[-�V(r)] exp[-�∆V]
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)
∫ dr

∂V(r)
∂λ

exp[-�V/(r)] exp[�∆V] ⁄∫ dr exp[-�V/(r)]

∫ dr exp[-�V/(r)] exp[�∆V] ⁄∫ dr exp[-�V/(r)]

and integrating over λ.

∆FC )∫λ)0

λ)1 [〈 ∂V(r, λ)
∂λ

exp[�∆V]〉λ* ⁄ 〈exp[�∆V]〉λ*]dλ

)∫λ)0

λ)1 〈 ∂V(r, λ)
∂λ 〉λ

dλ

)∆F
(16)

Analogously, if the modified potential is defined as V*(r) )
V(r) - ∆V, eq 16 can be redefined as

∆FC )∫λ)0

λ)1 [〈 ∂V(r, λ)
∂λ

exp[-�∆V]〉λ* ⁄ 〈exp[-�∆V]〉λ*]dλ

)∫λ)0

λ)1 〈 ∂V(r, λ)
∂λ 〉λ

dλ

)∆F (17)

Therefore, independent of the approach applied, the accelerated
molecular dynamics simulation method converges to the
canonical distribution, and the corrected canonical ensemble
average of the system is obtained by simply reweighting each
point in the configuration phase space on the modified potential

by the strength of the Boltzmann factor of the bias energy,
exp[�∆V] or exp[-�∆V], at that particular point.

Results

The first question to be answered about the aMDb approach
is if this method is able to improve conformational transi-
tions. To address this question, we performed MD simula-
tions of a butane molecule in explicit water and monitored
the dihedral angle shown in Figure 3. Figure 4 shows the
result obtained from normal MD simulations. It is worth
noting that even for a simple system like this, the number
of conformational transitions is still very limited. Figure
4-middle displays the results obtained from the aMDb

approach. In this simulation, only the torsional term of the
potential energy was applied in the boost potential (aMDtb).
Parameters E and R were set to 0.5 and 0.2 kcal/mol,
respectively. For comparison, Figure 4-bottom shows the
dihedral transitions calculated with the aMDt approach. In
this case, parameters E and R were set to 5.0 and 0.5 kcal/
mol, respectively. As expected, more conformational transi-
tions are observed with aMDtb and aMDt than with normal
MD simulations. Figure 4 also reveals that, even though both
methods improved conformational sampling, aMDtb still
produces a much larger number of transitions than aMDt.

Free Energy Calculations. The propane-to-propane sys-
tem (Figure 5) was used to test convergence and accuracy
of the accelerated TI simulations. A similar system, ethane-

Figure 7. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.
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to-ethane transformation, has been used before by other
groups to test the performance of different approaches to
calculate free energy changes. This transformation is par-
ticularly interesting because independent of the force field,
water model, or simulation method used, the free energy
change should be equal to zero (∆G ) 0).

The free energy changes obtained with normal MD
simulations are compared to the ones obtained with aMDtb,
aMDt, and aMDTtb. Figures 6, 7, 8, 9, and 10 show the free
energy change, the average free energy, and the error
associated with the propane-to-propane transformation cal-
culated from five independent TI simulations. In all simula-
tions, the same amount of sampling was performed at each
window, and an equal amount of time was spent in
equilibration and data collection. The error was estimated
by calculating the standard deviation of the five independent
simulations as a function of time. All TI calculations with
normal MD fail to reproduce the expected free energy value
(Figure 6), converging to free energy values of ≈-0.4 kcal/
mol. The change with time of the average free energy toward
the expected free energy value is rather slow, and it is clear
that this normal MD requires much longer simulations to
reproduce accurate results. Figure 7 displays the TI results
obtained with aMDtb. Although the calculated average free
energy change is closer to the corrected free energy value,
like normal MD, longer simulations are still required to
reproduce the correct average free energy change. Similar
results were obtained when the aMDt approach was
applied (Figure 8). However aMDtb still seems to converge

better than aMDt. Nevertheless, both approaches perform
better than normal TI simulations, and this improvement
can be mainly attributed to the increasing in conforma-
tional sampling.

As mentioned before, aMDtb and aMDt approaches modify
the energy landscape by adding a boost potential to the
potential surface, and, in these cases, the boost potential is
based on the torsional terms of the potential energy. Even
though the conformational sampling is clearly enhanced in
both approaches, those approaches still fail to generate
accurate results. The reason for that might be the absence
ofenergy terms in theboostpotentialdescribingsolute-solvent
and solvent-solvent interactions. Therefore, in order to also
accelerate the solvent response along the propane-to-propane
transformation, the dual boost approach was also tested with
TI calculations (∆VT was applied with parameters E and R
set to -3.0 and 30.0 kcal/mol per atom, respectively). Owing
to instabilities introduced by the application of aMDTt
approach in TI simulations, only results obtained with
aMDTtb are displayed in Figure 9. By comparing aMDTtb

and aMDtb, we see clearly that inclusion of the potential
energy terms describing solute-solvent and solvent-solvent
interactions in eq 3 dramatically improves the accuracy and
convergence of the TI simulations. It is worth mentioning
that all calculated free energy values using aMDTtb, with at
least 100 ps of data collection, converged to the correct value
and are within the estimated error. For the system studied
in this work, aMDTtb was the only approach to achieve

Figure 8. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.
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converged and accurate results from TI simulation (∆G )
-0.027 ( 0.04 kcal/mol).

Figure 10 shows the accumulated free energy for each value
of λ. In this plot, the accumulated free energy was calculated

by using equilibration ) data collection time ) 250 ps for each
window. Except for the aMDTtb, which performed remarkably
well, all approaches failed to reproduce the corrected free energy
change for the propane-to-propane transformation.

Figure 9. Free energy change in kcal/mol, calculated for the propane-to-propane simulations as a function of time from five
independent simulations (top). Standard deviation of the results from the five independent simulations (middle). The inset plot
shows in detail the standard deviation as a function of time for the points with at least 80 × 103 of data collection steps per λ.
The same number of equilibration and data collection steps were used for each λ. Average free energy change and the error
associated with each point were calculated from the five independent simulations (bottom). Units are in kcal/mol.

Figure 10. Accumulated free energy change for the propane-to-propane simulations calculated with 250 × 103 of data collection
steps per λ. The same number of equilibration and data collection steps were used for each λ.
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Distribution of the Boost Energy along the TI Simula-
tions. The main difference between the two approaches (eqs
1 and 3) consists of how the modified potential surface is
generated. For methods based on the aMD approach, the
molecular motions are accelerated by raising the energy
basins on the potential surface. Although this method proved
to be excellent to enhance conformational sampling of
biomolecules, some issues concerning the calculation of
thermodynamics properties still need to be addressed. For
instance, to fully recover ensemble average properties, each
point in the phase space should be multiplied by its respective
Boltzmann factor of the boost energy, exp(�∆V). In some
cases, when this procedure is applied, relatively few con-
figurations in the entire trajectory have significant contribu-
tions to the ensemble average. As a consequence, the
statistics are compromised, and the thermodynamic property
is not fully converged. This is the main issue to be addressed
when the aMD method is coupled with TI calculations. It is
worth mentioning that in this implementation ∆V is a non-
negative number, and its respective Boltzmann factor pro-
duces numbers in the interval [1f∞). Thus, large values of
exp(�∆V) correspond to configurations near energy minima
of the potential surface, while small values correspond to
relatively high-energy regions. Figure 11, on the right,
displays the distribution of the boost factor along the aMDt
simulations at three different values of λ. It is clear from
those plots that, even for this rather low acceleration
condition, the system spends almost the entire simulation in
regions of relatively high energy. Only very few configura-
tions (for instance configurations with exp(�∆V)>50) will
effectively contribute to the ensemble average.

In order to address this issue, here, we introduce the aMDb

approach aiming to improve sampling without compromising
the statistics in the TI calculations. As mentioned before, in
this approach, regions near the minima in the potential

surface are left unchanged, and the Boltzmann factor of the
boost energy is now defined as exp(-�∆V). In this imple-
mentation, exp(-�∆V) assumes values in the interval (0r1].
Thus, unlike the aMD approach, all configurations near the
low-energy regions of the potential surface (∆V ) 0), which
are the ones that most contribute to the ensemble average,
have the same weight of exp(-�∆V) ≈ 1. Besides that,
configurations sampled in high-energy regions of the con-
formational space have rather small weights, exp(-�∆V) ,
1, and, as a consequence, have a fairly small contribution to
the ensemble average. Figure 11, on the left, shows the boost
factor distribution along the aMDTtb simulations at three
different values of λ. It is clear that the aMDb approach is
not only able to sample both low- and high-energy regions
of the potential surface but also to keep regions near the
minima well populated. As a consequence, the statistics are
not compromised in the TI calculations, and the ensemble
average is recovered (Figure 9).

Methods

All calculations were performed using the Sander module
in the AMBER847 package that was modified to carry out
the accelerated MD simulations. The GAFF force field was
used to describe the solute in all simulations. The butane
molecule was solvated in a periodic box of explicit TIP3P
waters,48 which extends on each side 10 Å from the closest
atom of the solute, by using the Leap module in AMBER.
To bring the system to its correct density, we carried out an
MD simulation for 1 ns in which the NPT ensemble (T )
300 K, P ) 1 atm) was applied. All data collection was
carried out over MD simulations of 1 ns, during which the
NVT ensemble (T ) 300 K, density) 0.984 g/mL) was
applied. The final configuration was then used as the starting
point for the propane f propane simulations. In both

Figure 11. Distribution of Boltzmann factor of the boost potential calculated from propane-to-propane simulations using the
aMDTtb (left) and aMDt (right) approaches.
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systems, butane and propane f propane simulations, each
solute atom was assigned with zero partial charge. The free
energy change was calculated by varying λ form 0 (initial
state) to 1 (final state). All TI simulations were carried out
using seven discrete points of λ, which were determined by
Gaussian quadrature formulas. Normal and accelerated MD
simulations of 500 ps were carried out for each λ point. The
NVT ensemble was used in all TI simulations. Temperature
and pressure were controlled via a weak coupling to external
temperature and pressure baths49 with coupling constants of
0.5 and 1.0 ps, respectively. Apart from all TI simulations
where the time step was set to 1 fs, the equations of motion
were integrated with a step length of 2.0 fs using the Verlet
Leapfrog algorithm.50 For further analysis, the trajectory was
saved every 1.0 ps. The PME summation method was used
to treat the long-range electrostatic interactions in the
minimization and simulation steps.51,52 The short-range
nonbonded interactions were truncated using a 8 Å cutoff,
and the nonbonded pair list was updated every 20 steps.

Conclusions

In this work, we showed a straightforward way of coupling
the Thermodynamic Integration approach with the acceler-
ated MD method. We also introduced a new approach, aMDb,
aiming to improve convergence and efficiency of free energy
calculations in condensed-phase systems. The results ob-
tained with aMD and aMDb were compared with conven-
tional TI calculations. Our results showed that both accel-
erated MD approaches improve conformation sampling when
compared to normal MD simulations. When applied to just
torsion terms of potential energy, both approaches, aMDt
and aMDtb, increased substantially the number of conforma-
tion transitions of the butane molecule in explicit water when
compared to normal MD simulations. In addition, the
accuracy of free energy simulations was significantly im-
proved when sampling of internal degrees of freedom of
solute was enhanced. However, accurate and converged
results were only achieved when the solvent interactions were
taken into account in the accelerated MD approaches. When
combined with aMDb, the application of dual-boost approach
improved markedly the convergence and accuracy of TI
calculations. By analyzing the distribution of the boost
potential along the free energy simulations, we observed that
the aMDb approach efficiently samples both low- and high-
energy regions of the potential surface. Since this approach
also maintains well populated regions near the minima, the
statistics are not compromised in the TI calculations, and,
as a result, the ensemble average can be recovered.
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Abstract: Point mutations in the influenza virus enzyme neuraminidase (NA) have been reported
that lead to dramatic loss of activity for known NA inhibitors including the FDA approved sialic
acid mimics zanamivir and oseltamivir. A more complete understanding of the molecular basis
for such resistance is a critical component toward development of improved next-generation
drugs. In this study, we have used explicit solvent all-atom molecular dynamics simulations,
free energy calculations (MM-GBSA), and residue-based decomposition to model binding of
four ligands with NA from influenza virus subtype N9. The goal is to elucidate which structural
and energetic properties change as a result of a mutation at position R292K. Computed binding
free energies show strong correlation with experiment (r2 ) 0.76), and an examination of
individual energy components reveal that changes in intermolecular Coulombic terms (∆Ecoul)
best describe the variation in affinity with structure (r2 ) 0.93). H-bond populations also parallel
the experimental ordering (r ) -0.96, r2 ) 0.86) reinforcing the view that electrostatics modulate
binding in this system. Notably, in every case, the simulation results correctly predict that loss
of binding occurs as a result of the R292K mutation. Per-residue binding footprints reveal that
changes in ∆∆Ecoul for R292K-wildtype at position 292 parallel the change in experimental fold
resistance energies (∆∆GR292K-WT) with S03 < S00 < S02 < S01. The footprints also reveal
that the most potent ligands have (1) less reliance on R292 for intrinsic affinity, (2) enhanced
binding via residues E119, E227, and E277, and (3) flatter ∆Ecoul and ∆H-bond profiles. Improved
resistance for S03 appears to be a function of the ligand’s larger guanidinium group which leads
to an increased affinity for wildtype NA while at the same time a reduction in favorable interactions
localized to R292. Overall, the computational results significantly enhance experimental
observations through quantification of specific interactions which govern molecular recognition
along the N9-ligand binding interface.

Introduction

Hemagglutinin (HA) and neuraminidase (NA) are glycopro-
teins on the surface of the influenza virus and, as integral to
the life cycle of the virus, are attractive targets for drug

design.1 The World Health Organization (WHO) classifies
the HAs into sixteen subtypes (H1-H16) and the NAs into
nine subtypes (N1-N9) based on antigenic and genetic
analysis.1–3 Current flu vaccines are based on common
circulating influenza A virus subtypes H1N1 and H3N2 and
influenza B virus.4 Overall, seasonal influenza causes an
estimated 250,000-500,000 deaths worldwide and about
30,000-50,000 deaths in the United States each year.4

Historically, prior pandemics include the 1918 Spanish flu
(H1N1) with an estimated 50-100 million deaths,5 the 1957
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Asian flu (H2N2) with >1 million deaths, and the 1968 Hong
Kong flu (H3N2) with ca. 700,000 deaths.6 The more recent
but highly pathogenic avian influenza A subtype H5N1, first
isolated in 1998,7 has an astounding mortality rate with 383
human cases and 241 deaths reported to WHO for the period
2003-June 1, 2008.3 While HA is involved in binding of
the virion to the host cell, NA cleaves terminal sialic acid
groups from host cell-surface glycoproteins and glycolipids
resulting in release of viral progeny and further spread of
infection. A significant focus of drug design against influenza
has involved development of derivatives of sialic acid
designed to inhibit the release of viral progeny by binding
to NA. Notably, numerous computational studies have aided
these efforts,8–20 and development of “flu” inhibitors is often
cited as a seminal example of structure-based drug design.21

To date, two NA inhibitors have been approved by the
FDA,22 oseltamivir and zanamivir, and a third compound,
peramivir, is in phase 2 of clinical trials.23

In its biologically functional form, NA is a tetramer made
of four identical subunits each of which contains a super-
barrel structure primarily made of beta-sheets.24 Each
monomer contains an active site which Stoll et al.25 have
divided into five regions (Sites I-V) as shown in Figure 1.
Overall the binding site is structurally well-conserved across
subtypes and strains and is highly charged; nine of the twelve
binding pocket residues in Figure 1 are charged. Of particular
importance is the trio of Arg residues in Site I at positions
118, 292, and 371 which form strong hydrogen bonds with
the carboxylate off of position C2 on the central ring of
ligand substrates (see Table 1 for numbering).8 It is important
to note that this carboxylate group has been a key feature of
all reported inhibitors of neuraminidase. The acetamido group
(position C5) which interacts with Site III residues is also
largely conserved in most inhibitors.

Although the active site of NA is largely conserved across
all subtypes (N1-N9) and strains,8 evolving point mutations
in NA pose a major challenge for development of antivirals
as several mutations are known to cause a serious loss of
sensitivity to reported chemotherapeutics.26–32 For instance,
different strains with N1 subtypes bearing H274Y and N294S

mutations have been shown to confer up to 1800- and 200-
fold resistance respectively to oseltamivir.28,29 Point muta-
tions known to adversely affect binding and activity for
inhibitors with subtype N9 include R292K (Site I)26 and
E119G (Site II)27 and to a lesser extent R152K (Site III).30

Understanding the molecular basis for resistance caused by
such deleterious mutations is critical for the development of
more effective anti-influenza virus compounds.

McKimm-Breschkin et al.26 have reported activities for a
series of sialic acid mimics which inhibit NA from subtype
N9 from influenza strain A/NWS/Tern/Australia/G70C for
both the wildtype and R292K mutant. Table 1 shows
structures, activities, free energies of binding (∆GWT,
∆GR292K), fold resistance energies (∆∆GR292K-WT), and code
numbers for S00, N-acetylneuraminic acid (Neu5Ac, sialic
acid); S01, 2-deoxy-2,3-dehydro-N-acetylneuraminic acid
(Neu5Ac2en, DANA); S02, 4-amino-Neu5Ac2en; and S03,
4-guanidino-Neu5Ac2en (zanamivir, RELENZA22). S00 and
the other three ligands differ at position C2 where S00 has
a hydroxyl group which results in a nonplanar six-membered
ring compared with the other compounds which contain
double bonded character at position C2dC3 resulting in a
more planar scaffold. Otherwise, the ligands differ only in
functionality at position C4. S02 and S03 bear positively
charged amino and guanidino functionality, respectively,
while S00 and S01 contain a neutral OH group. The presence
of a charged group at C4 has a significant effect on
interaction of those ligands with residues in the binding site.
The ligands in Table 1 are arranged in order of increasing

Figure 1. Key interactions in the neuraminidase active sites
for inhibitor Neu5Ac2en (Table 1, S01). Figure adapted from
ref 25 which divides the site into five regions (Site I-V).
Specific hydrogen bonds and salt-bridge interactions are
shown as dashed lines.

Table 1. Chemical Structures and Inhibition Constants for
Sialic Acid Analogsa with Wildtype (WT) and Mutant
(R292K) Neuraminidase

code
Ki-WT
(µM)b

ca. ∆GWT

(kcal/mol)c
Ki-R292K

(µM)b
ca. ∆GR292K

(kcal/mol)c
∆∆GR292K-WT

(kcal/mol)

S00 55 -5.81 1820 -3.74 2.07
S01 2.64 -7.61 280 -4.85 2.76
S02 0.148 -9.32 14 -6.62 2.70
S03 0.002 -11.87 0.033 -10.21 1.66

a S00, N-acetylneuraminic acid (Neu5Ac, sialic acid); S01,
2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5Ac2en,
DANA); S02, 4-amino Neu5Ac2en; S03, 4-guanidino Neu5Ac2en
(zanamivir). b Experimental values from ref 26 for A/NWS/Tern/
Australia/G70C (subtype N9). c Experimental free energies of
binding (∆GWT, ∆GR292K) estimated as ∆Gbind exptl ≈ RT ln (Ki in
molar) at 25 °C.
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activity. All ligands show a substantial reduction in experi-
mental activities due to the R292K mutation.26 Although S03
(zanamivir) is the most potent, and the most resilient to
R292K, the experimental fold resistance (∆∆GR292K-WT)
energies reveal that the weakest binder S00 is actually the
second-most robust to the point mutation (Table 1, S03 >
S00 > S02 > S01).

Characterizing binding for ligands with wildtype and
mutant forms of NA will ultimately enable the design of
improved inhibitors. Prior NA computational studies include
rational design8 using Goodford’s GRID program,33 energy
minimization and molecular dynamics (MD),9,11 Poisson-
Boltzmann (PB) calculations,10 linear interaction energy
(LIE) calculations,12 PMF-scoring using DOCK,13 compara-
tive binding energy analysis,14 molecular orbital calcula-
tions,15 MM-PBSA simulations,16–18 QSAR analysis,19 charge
optimization,34 and MD simulations aimed at characterizing
loop flexibility20 from recently crystallized35 N1 subtypes.
The present study is focused on characterization of the
R292K variant. All-atom explicit solvent MD simulations,
free energy calculations, and residue-based decomposition
were used to model ligands in complex with NA subtype
N9 with the following goals: (1) develop a robust compu-
tational model for prediction of binding affinities in agree-
ment with experiment, (2) determine which factors contribute
most to the observed binding affinities, and (3) delineate
which specific structural and energetic factors contribute to
the R292K resistance profiles. Well-tested computational
models of inhibitors with N9, and clinically relevant mutants,
will enable isolation of the energetic and structural deter-
minates which confer improved binding resilience of S03
and a greater understanding of what drives molecular
recognition with NA in general. Development of improved
inhibitors across all NA subtypes, including the recently
discovered highly pathogenic avian strain,7 is paramount
given the likelihood of future influenza pandemics.6,36,37

Theoretical Methods

In this study, free energies of binding were estimated for
four ligands with wildtype neuraminidase and an R292K
mutant using the single trajectory Molecular Mechanics
Generalized Born Surface Area (MM-GBSA) method.38,39

This approach was recently used to successfully investigate
binding for a series of large viral entry peptide inhibitors of
HIVgp4140 and to determine the origins of selectivity for
small inhibitors of matrix metalloproteases.41 Although
considered an approximate free energy calculation technique,
the benefits include relative ease of setup and use, the ability
to study large structural changes, and the ability to compare
binding energies between ligands with diverse topologies.
Tradeoffs include an incomplete accounting of all solute
entropic effects and the fact that an implicit solvent model
is used for the free energy calculations. However, changes
in solute configurational entropies can be reasonably assumed
to remain constant when ligands have similar binding poses
and these changes are often ignored. Further, recent
advances42,43 and robust evaluation44 of GBSA continuum
methods for estimation of desolvation effects have revealed
that implicit solvent models can indeed be very accurate

provided that correct charge models and radii are employed
in the calculations. Finally, the single trajectory method used
here obviates the need for alchemical transformations to
obtain free energies given that only a single simulation of
each protein-ligand complex is required.38,39 Thus, results
can be obtained considerably faster than what are historically
regarded as gold-standard free energy calculation methods
which rely on perturbation techniques such as thermodynamic
integration (TI) and free energy perturbation (FEP).45,46

Despite the approximation made in MM-GBSA, the method
has been used with good overall success to study a wide
variety of problems.18,40,41,47–50 The present study serves as
an additional test of the utility of the method for estimation
of the effects of point mutations on protein-ligand binding.

The calculations make use of explicit solvent MD simula-
tions to generate ensembles of low energy structures which
are postprocessed to compute the binding energy compo-
nents. Implicit solvent is used only for estimation of the
desolvation terms. After the simulations, explicit solvent is
stripped off, and the coordinates for each species are
separated to yield the complex, unbound receptor, and
unbound ligand. Average energies (and associated uncertain-
ties) are computed from many single point calculations using
the ensemble of structures saved periodically during the MD
simulations with each species total free energy estimated
using eq 1. The total binding free energy is computed using
eq 2.

G)∆Ghyd +EMM -TS (1)

∆Gbind )Gcomplex - (Greceptor +Gligand) (2)

Free energy of hydration (∆Ghyd ) Gpolar + Gnonpolar) terms
which account for the desolvation penalties which occur upon
binding are estimated from Generalized Born (GB) and
Solvent Accessible Surface Area (SASA) calculations which
yield Gpolar and Gnonpolar, respectively. As validation, Rizzo
et al.44 have recently shown good agreement between
experiment and theory from calculations of more than 500
organic molecules using continuum GBSA methods to
estimate ∆Ghyd. The EMM term represents the sum of
electrostatic (Coulombic), van der Waals (Lennard-Jones),
and internal energies (bonds, angles, and dihedrals) which
are computed using the same molecular mechanics force field
used during the original MD simulations. Using the single
trajectory approximation, coordinates of separated ligand and
receptor are identical to those in the complex, thus any
changes in bond, angle, and dihedral (∆Ebond, ∆Eangle, and
∆Edihedral) energies inherent in eqs 1 and 2 will cancel and
∆Ecoul and ∆Evdw reflect only the nonbonded intermolecular
energies. The final TS terms, representing temperature (T)
and solute entropy (S), were omitted given the consistent
binding pose and size for the four NA ligands being studied.
Neglecting T∆S and internal strain energy is considered to
be a reasonable approximation when ligands are of similar
size and structure and only relative binding affinities are of
interest. However, it should be emphasized that changes in
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system entropy due to the hydrophobic effect are in fact
included as they are inherently contained in the ∆Ghyd terms.

Computational Details

System Setup. The biological form of NA is a tetramer;
however, each monomer contains a functionally complete
binding site,1 thus only a single monomer was used for the
simulations (Figure 2). The binding site is lined with highly
charged and flexible Arg, Lys, Asp, and Glu residues.
Receptor and ligand preparation was done using the Molec-
ular Operating Environment (MOE) program.51 The coor-
dinates of neuraminidase subtype N9 complexed with ligand
S01 were taken from the 1.80 Å crystallographic structure
reported by Smith et al.52 (pdb entry 1F8B) shown in Figure
2. The N9 receptor structure is from strain A/NWS/Tern/
Australia/G70C which is the same strain employed in the
experimental activity measurements reported by McKimm-
Breschkin et al.26 (see Table 1) and for the ligands being
studied here. Crystallographic water molecules were deleted
from 1F8B; however, a single calcium ion near the active
site was retained.

Examination of available crystal structures for the 4 ligands
complexed with wildtype NA and R292K shows the same
well-defined binding pose, and protein side chain conforma-
tions in the NA binding site are relatively consistent across
the series with the only primary difference being the
rotameric state of Lys for the mutation. Therefore, a single
set of receptor coordinates (in this case 1F8B with ligand
S01) was used as the basis for construction of all simulations.
This was primarily motivated by the fact that this would
potentially eliminate noise in the simulations caused by
multiple different starting conditions (i.e., multiple crystal
structures). The R292K mutant was made by manually
mutating Arg to Lys at residue 292 in 1F8B and orienting
Lys to mimic the rotamer found in structures of R292K and
avoid any steric clashes. Initial geometries for analogs S00,
S02, and S03 were obtained from crystallographic complexes
2QWB, 2QWD, and 2QWE and oriented into the 1F8B
reference frame (which contained S01) through alignment
of C-alpha backbone atoms common to all NA structures.
This procedure results in eight receptor-ligand complexes
constructed from a single set of N9 coordinates.

The wildtype and R292K receptors were saved as PDB
files without hydrogen atoms, and the ligands were saved as
MOL2 files which included hydrogen atoms. Simulation
ready parameter files were constructed for each system using

the AMBER8 suite of programs.53 The antechamber and
tleap modules were used to assign the GAFF54 force field
parameters to the ligands and FF99SB55 parameters and
hydrogen atoms to the receptors. Protein side chains were
assigned default AMBER protonation states (Asp/Glu minus,
Arg/Lys () which, in the current study, yielded good results.
A previous study by Masukawa et al.16 similarly used default
protonation states for NA, with a related AMBER force field,
also with good success. The current work does not study
changes in protonation; however, Smith et al.52 and Forna-
baio et al.56 have reported computational results for NA under
varying states. For the ligands, GAFF parameters were
augmented with ChelpG57 partial atomic charges computed
at the HF/6-31G*//HF/6-31G* level of theory using the
program Gaussian98.58 Inspection of energy minimized
ligands using the force field in the unbound state revealed a
nonplanar guanidino group for S03 which was remedied
through manual addition of GAFF improper dihedral angle
parameters which forced the group to be planar. Each system
was then subjected to a short energy minimization which
yielded relatively small changes in geometry (bound and
unbound) and no discernible steric clashes which indicated
that the starting coordinates and force field parameters were
reasonable.

MD Simulations and Postprocessing. Each solvated
protein-ligand system contained 390 residues (including one
calcium ion and the ligand) and 11,949 TIP3P59 waters in a
rectangular periodic box of 68 × 77 × 77 Å3. All energy
minimizations and MD employed the sander module from
AMBER8. A nine step equilibration protocol was used prior
to production MD in the following order. First, energy
minimization for 1000 cycles followed by 50 ps of MD at
298.15 K was performed on each complex using a restraint
weight of 5.0 kcal/mol Å2 on all heavy atoms (steps 1 and
2). This was followed by three rounds of energy minimization
for 1000 cycles each in which the restraint weight on heavy
atoms was reduced from 2.0, to 0.1, to 0.05 kcal/mol Å2

(steps 3-5). An additional three rounds of MD (50 ps each
at 298.15 K) were performed with decreasing restraint
weights reduced from 1.0, to 0.5, to 0.1 kcal/mol Å2 (steps
6-8). A final equilibration of 50 ps of MD at 298.15 K using
restraints only on protein backbone atoms (C-alpha, C, N,
O) was then performed using a weight of 0.1 kcal/mol Å2

(step 9). The production run employed the same weak
backbone restraints as the last equilibration step for a total
of 2000 ps of MD. A 1 fs time step was used for the
equilibration stages (steps 1-9), and a 2 fs was used for the
final production runs.

Weak backbone restraints were employed in the final
production runs based on preliminary results from unre-
strained MD simulations of NA monomers using only
implicit solvent which showed larger than expected move-
ment especially for protein termini regions. Larger motion
would be expected due to a lack of friction in implicit solvent
dynamics but is probably also a consequence of the fact that
an NA monomer was simulated instead of a tetramer of NA
subunits which would have otherwise held the protein termini
restrained. In order to avoid similar artifacts in the explicit
solvent TIP3P-MD, a weak restraint was employed to keep

Figure 2. (a) Two views of neuraminidase (orange) com-
plexed with ligand S03 (green). Protein coordinates from PDB
entry 1F8B. (b) Close up view of the highly flexible and
charged binding site.
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the backbone fold intact. Weak restraints have previously
been used with good results for simulations of inhibitors with
MMPs41 and HIVgp41.40 Temperature and pressure of the
simulations was regulated using the Berendsen60 schemes
using the heat bath coupling and pressure relaxation time
constants of 1.0 ps each. The SHAKE61 algorithm was
applied to constrain bonds involving hydrogen atoms, and
the particle mesh Ewald (PME)62 method was used with 8.0
Å direct-space nonbonded cutoff.

Coordinates (snapshots) of each complex were saved every
picosecond (2000 snapshots total) during the MD production
trajectory. Each trajectory was then split into separate species
representing the complex, the unbound receptor, and the
unbound ligand, and the sander module was used to perform
single point postprocessing calculations to compute the
energy components (∆Evdw, ∆Ecoul, ∆∆Gpolar, ∆∆Gnonpolar)
needed for estimation of the total binding free energy (∆Gbind

calcd). The polar energy terms Gpolar were obtained via the
AMBER implementation63,64 of the Hawkins, Cramer, and
Truhlar65,66 pairwise Generalized Born67 model as modified
by Onufriev et al.68 (model type igb)5). GB calculations
employed dielectric constants of 1 and 78.5 and AMBER
mbondi2 radii. Nonpolar terms were estimated as Gnonpolar

) γSASA + � with SASA in Å2 using standard values of
γ ) 0.00542 kcal/mol Å2 and � ) 0.92 kcal/mol.69 Binding
site footprints were obtained from pairwise decomposition
of the per-residue interaction energies between the ligands
and each NA residue and averaging over the total trajectory.
Intermolecular hydrogen bonds were also computed and were
defined as a structural interaction between a donor (HD) and
acceptor (XA) with a distance of 2.5 Å or less and an angle
between XD-HD---XA of between 120 and 180°.

Results and Discussion

Simulation Stability. The stability of each simulation was
monitored through examination of structural and energetic
properties which occurred during the course of the 2 ns
production trajectories. Figure 3, which is representative,
shows results for ligand S01 complexed with wildtype
neuraminidase. Here, plots of root-mean-square-deviation
from the original starting coordinates (rmsd, Figure 3a),
instantaneous changes in desolvation (∆∆Ghyd, Figure 3b),
electrostatic (∆Ecoul, Figure 3c), and van der Waals (∆Evdw,
Figure 3d) nonbonded interaction energies are well-behaved
which indicate the simulations are reasonably converged. In
particular, ∆Evdw interactions remain almost constant across
the trajectory, and rmsd values (Figure 3a) show only minor
variation. Interestingly, a relatively small shift in ligand
positional rmsd (Figure 3a, blue line) at around 300 ps results
in a rather large increase in favorable ∆Ecoul with a concurrent
increase in unfavorable ∆∆Ghyd. Such a large change in
energy, from a relatively small change in geometry, is
expected to be a consequence of the fact the NA binding
site is so highly charged. After this change, the ligand rmsd
remains constant, but the opposing desolvation and electro-
static terms then slowly come back to their respective
equilibrium positions observed before the change. Another
shift in group correlated energies for ∆Ecoul with ∆∆Ghyd

appears starting at around 1700 ps (Figure 3b vs Figure 3c).

For this second period, normal protein side-chain sampling
is expected to be the primary factor given the relatively flat
ligand rmsd shown in Figure 3a (blue line). In terms of
magnitude, the nature of the highly charged NA binding site
results in significantly more favorable ∆Ecoul interaction
energies than ∆Evdw (Figure 3c vs Figure 3d). As discussed
below, variation in computed electrostatic properties appear
to play the dominant role in describing variation in the
experimentally observed activities.

Our group and others have previously noted that favorable
intermolecular electrostatic energies are anticorrelated to the
opposing desolvation penalties.11,40,41,70–73 Here, the cor-
relation coefficient is computed to be r ) -0.86 between
∆∆Ghyd and ∆Ecoul for the 2000 instantaneous energies shown
in Figure 3 for S01 with wildtype N9. The subtle interplay
of structure with the various energy terms is a hallmark of
the intimate relationship between opposing interactions (i.e.,
desolvation with electrostatics) which ultimately contribute
to the overall free energy of binding. Notably, the present
simulations and protocols appear to capture such subtleties
well. The dramatic effects of desolvation are even more
pronounced when considering all four ligands (S00-S03)
with both receptors (wildtype and R292K). Here, an r2 )

Figure 3. Instantaneous results from MD simulations of ligand
S01 with wildtype neuraminidase subtype N9 plotted vs time.
(a) shows root-mean-square deviation (rmsd) in angstroms
(Å) between snapshots from the MD simulations and the initial
starting coordinates for all protein heavy atoms (black line),
protein backbone main chain atoms C-alpha, C, N, O (gray
line), and ligand heavy atoms (blue line). (b) shows the
change in free energy of hydration (∆∆Ghyd ) ∆∆Gpolar +
∆∆Gnonpolar), while panels (c) and (d) show the nonbonded
intermolecular electrostatic (∆Ecoul) and van der Waals (∆Evdw)
interaction energies, respectively.
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0.97 is obtained using averaged values (N ) 2000) for ∆Ecoul

and ∆∆Ghyd as shown in Figure 4.
Correlation with Experimental Activities. Figure 5

shows the correlation between the experimental (∆Gbind exptl)
and theoretical (∆Gbind calcd) free energies of binding
computed using the MM-GBSA method. Here, each data
point represents the average values of ∆Gbind calcd obtained
from 2000 MD snapshots of the four ligands with either
wildtype (filled circles) or the R292K mutant (open squares),
and the correlation coefficients of r ) 0.87 and r2 ) 0.76
indicate overall good agreement with the experimental
binding free energies. Notably, the calculations correctly
predict that the R292K mutations reduced binding with each
ligand in every case as highlighted in Figure 6 which shows
instantaneous computed ∆Gbind values for wildtype (solid

lines) and R292K (dashed lines) trajectories. As was observed
in plots of individual energetic components (Figure 3), the
total free energies (∆Gbind calcd ) ∆Evdw + ∆Ecoul +
∆∆Ghyd) are also well-behaved. Smoothed lines in Figure 6
represent running block averaging over the previous 100 MD
snapshots.

Energy Decomposition. Individual energy terms which
contribute to ∆Gbind calcd (eqs 1 and 2) were examined to
determine which factors drive association and correlate best
with the experimental activities and are shown in Table 2.
Correlations coefficients (r2 values) are shown for Coulombic
(∆Ecoul), van der Waals (∆Evdw), polar (∆∆Gpolar), nonpolar
(∆∆Gnonpolar), total electrostatics (∆Gelectro ) ∆Ecoul + ∆∆Gpo-

lar), and the total computed binding energy (∆Gbind calcd )
∆Ecoul +∆Evdw + ∆∆Gpolar + ∆∆Gnonpolar).

As previously reported, nonbonded van der Waals interac-
tions often correlate strongly with binding across a variety
of sytems.40,41,74–76 Representing intermolecular packing,
favorable ∆Evdw is a good predictor of likely intermolecular
geometries. Programs such as DOCK77 which employ
scoring functions where ∆Evdw terms tend to dominate have
yielded good success for prediction of binding poses.78,79

In the present study, the most potent compound S03 is
computed to make the strongest ∆Evdw interactions with
wildtype neuraminidase compared with the other ligands
(S03wildtype ) -29.26 versus ca. -21 to -24 kcal/mol, Table
2, ∆Evdw). But, the trend is not maintained for the R292K
mutation (Table 2, S03R292K ) -22.92 versus ca. -21 to
-24 kcal/mol), and the overall correlation coefficient for

Figure 4. Intermolecular protein-ligand Coulombic energies
(∆Ecoul) versus opposing desolvation penalties (∆∆Ghyd). Each
symbol represents the average energy computed from 2000
MD snapshots saved during simulations of S00-S03 with
wildtype (b) and R292K mutant (≤) neuraminidase subtype
N9.

Figure 5. Average computed free energies of binding (∆Gbind

calcd) versus experimental activities (∆Gbind exptl) for sialic
acid inhibitors with wildtype (b) and R292K mutant (≤)
neuraminidase subtype N9.

Figure 6. Instantaneous (jagged lines) and 100-block aver-
aged (smoothed lines) free energies of binding (∆Gbind calcd)
vs time for ligands with wildtype (black, solid lines) and R292K
(gray, dashed lines) neuraminidase subtype N9.
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∆Evdw with experiment is low (r2 ) 0.23). However, the
∆Ecoul terms are computed to be highly correlated with ∆Gbind

exptl (Table 2) with strong overall correlation coefficients
of r ) 0.96 and r2 ) 0.93 (Figure 7). A least-squares fit
using ∆Ecoul, ∆Evdw, ∆∆Gpolar, and ∆∆Gnonpolar in Table 2 as
descriptors for ∆Gbind exptl confirms the importance of
∆Ecoul. To obtain relative weights of the descriptors, each
column of raw data in Table 2 was mean centered and scaled
by the standard deviation prior to fitting. The large positive
coefficient for ∆Ecoul (1.131) vs the small coefficients
obtained for other descriptors ∆Evdw (0.076), ∆∆Gpolar

(0.094), and ∆∆Gnonpolar (-0.135) clearly indicates Coulom-
bic energy best describes the variation. In addition, the above
fit using all four terms yielded a correlation coefficient of r2

) 0.93 with experiment which is the same as that obtained
using only the ∆Ecoul term alone (see Table 2).

Early studies by Taylor and von Itzstein11 also found that
electrostatic terms best described variation in activity for a
series of compounds with neuraminidase of subtype N2. The
Taylor study obtained r2 ) 0.80 using the sum of intermo-
lecular Coulombic and reaction field free energy (computed
from Poisson-Boltzmann calculations) which is comparable
with the value of r2 ) 0.73 obtained here for the total

electrostatics term (∆Gelectro ) ∆Ecoul + ∆∆Gpolar, Table 2).
Similarly, Bonnet and Bryce18 found that total electrostatics
(∆Gelectro) yielded the best fit with experiment (r2 ) 0.72,
called Model 5E) for a series of 10 ligands with wildtype
N9 using a MM-GBSA single-step perturbative simulation
approach. As noted earlier, desolvation and Coulombic terms
are highly anticorrelated (Figure 4), thus variation in ∆∆Gpolar

is strongly correlated with ∆Gbind exptl as expected (r2 )
0.88). The final term, which reflects burial of surface area
upon complexation for both ligand and protein (∆∆Gnonpolar),
does not correlate as strongly with the activities (overall r2

) 0.62, Table 2). However, ∆∆Gnonpolar is computed to be
most favorable for the largest ligand S03 (-4.7 kcal/mol
for WT and -4.6 kcal/mol for R292K) compared with the
other ligands (ca. -4.3 to -4.4 kcal/mol) which is physically
reasonable. Overall, the energetic decomposition suggests
that inhibitory activity of sialic acid mimics for wildtype and
the R292K mutant is primarily controlled by, and best
described by, intermolecular Coulombic interactions (∆Ecoul).
The negative sum for ∆Gelectro, which can be thought of as
the intermolecular Coulombic energies mediated by the polar
desolvation penalties, is generally larger in magnitude than
∆Evdw (Table 2). This further suggests that electrostatics
dominate association.

In contrast, Armstrong et al.34 found that similar terms
(called ∆Gref

elec in ref 34) were positive for a series of ligands
with neuraminidase and concluded that additional factors
such as van der Waals, entropy, and molecular strain energies
would in many cases be more significant than electrostatics.
Strain effects in the NA system have been investigated
previously by Masukawa et al.16 who reported that S00 (sialic
acid) could pay ca. +5 kcal/mol penalty (called ∆Einternal in
ref 16) in going from the unbound state to the boat/twist-
boat conformation observed in the bound state. Interestingly,
their calculations for S01 (DANA) yielded the opposite effect
with a net gain of ca. -5 kcal/mol. However, since the
experimental binding difference between S00 and S01 is 1.8
kcal/mol (Table 1), which is much smaller than the ∼10 kcal/
mol difference in ∆Einternal reported by Masukawa et al.,16

other energy terms (i.e., ∆Ecoul, ∆Evdw, ∆∆Ghyd) are clearly
important. In the present study, the overall good agreement
between the simulation results with experiment suggests that
accounting for molecular strain is not necessary to accurately
rationalize binding in this system. Differences here with

Table 2. Contributions toward Calculated Free Energies of Binding (∆Gbind calcd) from MD Simulations for Sialic Acid
Inhibitors (S00-S03) with Wildtype and R292K Mutant Neuraminidase Subtype N9a

system
∆Evdw

A
∆Ecoul

B
∆∆Gpolar

C
∆∆Gnonpolar

D
∆Gelectro )

B+C
∆Gbind calcd )

A+B+C+D
∆Gbind expt ≈

RT ln(Ki)b

S00wildtype -23.62 &(mn; 0.09 -182.32 &(mn; 0.31 146.36 &(mn; 0.23 -4.35 &(mn; 0.002 -35.96 -64.07 &(mn; 0.13 -5.81
S01wildtype -21.93 &(mn; 0.09 -193.71 &(mn; 0.29 154.70 &(mn; 0.22 -4.28 &(mn; 0.002 -39.01 -65.58 &(mn; 0.11 -7.61
S02wildtype -22.84 &(mn; 0.11 -228.66 &(mn; 0.33 194.81 &(mn; 0.18 -4.41 &(mn; 0.002 -33.85 -61.18 &(mn; 0.14 -9.32
S03wildtype -29.26 &(mn; 0.10 -265.78 &(mn; 0.29 218.79 &(mn; 0.18 -4.70 &(mn; 0.001 -46.99 -81.26 &(mn; 0.15 -11.87

S00R292K -23.98 &(mn; 0.10 -163.63 &(mn; 0.33 145.77 &(mn; 0.27 -4.36 &(mn; 0.003 -17.86 -46.56 &(mn; 0.11 -3.74
S01R292K -23.31 &(mn; 0.08 -146.52 &(mn; 0.25 131.67 &(mn; 0.19 -4.37 &(mn; 0.001 -14.85 -42.85 &(mn; 0.13 -4.85
S02R292K -21.40 &(mn; 0.10 -185.63 &(mn; 0.29 162.95 &(mn; 0.21 -4.36 &(mn; 0.002 -22.68 -49.02 &(mn; 0.12 -6.62
S03R292K -22.92 &(mn; 0.10 -258.67 &(mn; 0.30 216.12 &(mn; 0.20 -4.63 &(mn; 0.001 -42.54 -70.49 &(mn; 0.13 -10.21

r2 ) 0.23 r2 ) 0.93 r2 ) 0.88 r2 ) 0.62 r2 ) 0.73 r2 ) 0.76

a All energies &(mn; standard error of the mean in kcal/mol computed from each ensemble of 2000 MD snapshots. b Activity values from
Table 1.

Figure 7. Correlation of nonbonded electrostatic (∆Ecoul)
interaction energies with experimental activities (∆Gbind exptl)
for sialic acid inhibitors with wildtype (b) and R292K mutant
(≤) neuraminidase subtype N9.
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studies that suggest other terms are as or more important
than ∆Ecoul could be attributed to changes in number and
type of ligands studied, the type of simulations (MD vs
single-point), the type of energetic analysis (GB vs PB), or
other calculation protocols. The observation that we also
obtain strong correlation for ∆Gelectro with ∆Gbind exptl (Table
2, r2 ) 0.73) reinforces the view that electrostatics both best
describe variation and drive association in this system.
H-bonding analysis (shown below) provides additional
support. Given the highly charged nature of the NA binding
site, strong agreement between ∆Gbind exptl and ∆Ecoul (or
with solvent mediated ∆Gelectro), as opposed to ∆Evdw, is we
believe physically reasonable and not unexpected.

Origins of Resistance: Binding Site Footprints. Residue-
based decomposition can be used to determine hotspot
regions within a binding site and reveal which specific amino
acids play important roles for binding. Strockbine and
Rizzo40 recently showed the utility of using such binding
site “footprints” to highlight that differential association of
peptide inhibitors with HIVgp41 is driven solely by changes
in ∆Evdw energies occurring within a highly conserved
binding pocket, supporting the hypothesis that the gp41
pocket region is an important drug target site. For the NA
system, prior studies have reported a variety of residue-based
methods including energy decomposition, average distances,
and partial-least-squares analysis in an effort to gain insight
into which inhibitor interactions are most important. 9,14,16,17,33

In the present study, Coulombic footprints were analyzed
given that variation in ∆Ecoul, as opposed to ∆Evdw terms,
correlates most strongly with the experimental activities (r2

) 0.93, Table 2). H-bonding footprints were also computed.
The primary focus here is to delineate the origins of the
different fold resistance profiles for the four ligands with
R292K. For the ligands with neutral functionality at position
C4 (see Table 1 for numbering), Figure 8 highlights that very
similar Coulombic footprints are obtained for S00 and S01,
and these are both distinctly different from the corresponding
footprints for ligands S02 and S03. The more rugged
footprints for S00 and S01 show that many receptor residues
on NA interact unfavorably (positive ∆Ecoul) with these
ligands as opposed to S02 and S03 which have much
smoother ∆Ecoul profiles and fewer per-residue energies
which are unfavorable. This observation is a consequence
of the fact that positively charged amine and guanidino
groups on S02 and S03 lead to an overall net formal ligand
charge of zero as opposed to a net negative charge for S00
and S01.

Focusing in on the key residues in the NA binding site,
Figure 9 shows reduced binding footprints, defined here as
the subset of residues which have a significant per-residue
Coulombic energy contribution (favorable or unfavorable
with ∆Ecoulg 20 kcal/mol). Figure 9a dramatically highlights
the similar energetic profiles (∆Ecoul) for binding of the
negatively charged S00 and S01 with wildtype NA (solid
lines) versus neutral ligands S02 and S03 (dashed lines). The
Figure 9a footprint quantifies the importance of the Site I
central Arg (see Figure 1) at position 371 which is computed
here to be the most energetically favorable interaction for
each inhibitor. The relative importance of other Site I residues

R118 and R292 which flank R371 are more varied. Figure
9a also reveals that residue R292 in wildtype NA makes
strong interactions with ligands S00 and S01 (ca. 80 kcal/
mol), but for S02 and S03 (ca. 20-30 kcal/mol) the
interaction is less significant (black arrow). Despite binding
more tightly with wildtype NA (Table 1), ligands S02 and
S03 do not appear to rely as strongly on electrostatic
interactions with residue R292 as do S00 and S01 for their
intrinsic binding affinity. Thus, the calculations suggest that
any loss of interactions at position 292 would not be as
detrimental for S02 and in particular S03. In general
agreement with this hypothesis, experimentally, S03 loses
the least amount of binding energy as a result of the R292K
mutation with fold resistance ∆∆GR292K-WT ) 1.66 kcal/mol
compared with S02 ) 2.70 kcal/mol and S01 ) 2.76 kcal/
mol (Table 1). Interestingly, the experimental loss in energy
due to R292K for the weakest inhibitor S00 ) 2.07 kcal/
mol, which is less than either S01 or S02. This may be related
to the suggestion that NA ligands closest in structure to the
native substrate would in general be more robust to
mutation.1,80 The pyranose scaffold of S00 is saturated and
most like the sialic acid moieties cleaved by NA.

Additional information about the origins of resistance
becomes available when considering the differential (relative
change) in Coulombic energy. Figure 9b shows the reduced
per-residue Coulombic energies (∆∆Ecoul) for R292K minus
wildtype. Differences evident in the delta footprints reveal
some enhanced interactions for S00, particularly at position
D151, and R224 which probably contribute to the phenomena
that the ligand is second-most robust to the mutation (Figure
9b, red solid line). The most robust inhibitor S03 shows the
overall flattest profile (Figure 9b, green dashed line). Most

Figure 8. Intermolecular ligand-protein (per-residue) Cou-
lombic energy footprints for wildtype N9.
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significant is the fact that the change at position R292 is
relatively constant for S03 compared with the other ligands
(Figure 9b, black arrow). Further, the ∆Ecoul losses here at
292 (energies in kcal/mol) for the series S03 (4.4) < S00
(22.4) < S02 (27.3) < S01 (34.8) parallel the trend for
changes in experimental fold resistance (Table 1, ∆∆GR292K-

WT) with S03 (1.66) < S00 (2.07) < S02 (2.70) < S01 (2.76)
including the fact that S00 is second-most robust.

Compounds S02 and S03 were originally designed1,8 using
structure-based calculations (GRID program)33 which pre-
dicted that replacement of the -OH group on S01 with
positively charged functionality at position C4 on the ligand
would lead to enhanced binding due to enhanced electrostatic
interactions with glutamic acid at position E119 for S02 and
E119 and E227 for S03. Subsequent experimental testing
confirmed enhanced binding for S02 and S03 versus S01,
and this is often cited as one of the premier examples of
rational, computer-aided drug design. The binding footprints
computed here (see Figure 9a) clearly illustrate that, as
originally predicted,8 S02 and S03 show enhanced interac-
tions at positions E119 and that S03 makes additional
favorable interactions with E227. We also note that additional
favorable interactions relative to the other ligands are
observed here for S03 with residue E277. As described
below, the same general trends observed here for ∆Ecoul are
also seen in H-bonding footprints.

The dynamic nature of the simulations yields protein-
ligand interactions with a wide-range of instantaneous per-
residue energies, and such variance is expected to be
biologically relevant. When viewed as histograms, the
electrostatic energies shown in Figure 10 between the ligands
and residue 292 only (wildtype Arg or mutant Lys) clearly
show that S03 remains relatively invariant to the R292K
mutation. Conversely, S00-S02 show dramatic reductions
in energy and an overall shift in their respective Coulombic
populations (N ) 2000). Similarities in magnitude for
energies contained in the histograms for charged (S00, S01)
versus neutral (S02, S03) ligands are also noted. Overall,
the ∆Ecoul and ∆∆Ecoul footprints (Figures 10–12) reveal

binding differences which suggest that improved resistance
is a function of less reliance on R292 for intrinsic binding
affinity and enhanced binding to wildtype via specific
interactions primarily at E119, E227, and E277.

Hydrogen Bonding. Given the importance that electro-
statics play in this system, intermolecular hydrogen bonding
was also monitored. The computed values are observed to
strongly correlate with experiment. For example, average
number of H-bonds from trajectories with wildtype N9 yield
S00 (11.46) < S01 (12.10) < S02 (12.95) < S03 (14.23)

Figure 9. Intermolecular ligand-protein (per-residue) Coulombic energy footprints from a reduced set (favorable or unfavorable
with ∆Ecoul g 20 kcal/mol). (a) shows the wildtype NA footprint, while (b) shows the difference footprint for the mutation (R292K-
WT). Black arrow indicates site of the R292K mutation. Energies in kcal/mol.

Figure 10. Populations (N ) 2000) of per-residue Coulombic
energies for ligands with residue 292 for wildtype (hashed
histograms) and the R292K mutant (shaded histograms).
Energies in kcal/mol.
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which parallel the binding energies order. And, H-bond
values from the R292K simulations yield S00 (7.81) < S01
(8.36) < S02 (9.76) < S03 (15.13) which also follow the
experimental ordering (see Table 1). The overall correlation
for number of H-bonds with ∆Gbind exptl is r ) -0.96, r2

) 0.86. Interestingly, for R292K, a slight increase is noted
for S03 compared with the dramatic losses experienced
overall by the other inhibitors and is discussed further below.

Residue-based footprints were also computed to examine
if changes in binding energy were structurally correlated to
patterns in H-bonds. Figure 11a shows the average number
of H-bonds each ligand makes with the reduced set of key
pocket residues for wildtype N9. As evident in Figure 11a,
all ligands are tightly coordinated to the central Site I Arg
at position 371 which makes bidentate interactions with the

ligand carboxylate of nearly constant 2.5 H-bonds across the
series. These results are consistent with the overall archi-
tecture of the NA site (see Figure 1) and mirror the
Coulombic energy trends regarding the importance of the
Site I central Arg. As was similarly observed for ∆Ecoul

footprints shown in Figure 9a, H-bonding for S03 with R292
is also substantially weaker (H-bonds ca. 1.0) than for the
other ligands (H-bonds >1.0) which are all more affected
by the mutation. In fact, H-bonds populations at position
R292 are inversely correlated to the experimental binding
trends with S03 < S02 < S01 < S00 (Figure 11a, black
arrow). Again, the implication is that S03 relies less on
interaction with R292 for intrinsic affinity with wildtype
despite the fact that the ligand is the most potent. Increased
potency for S03 is a function of the dramatic increase in
H-bonding with a trio of glutamic acids (E119, E227, and
E277) as shown in Figure 11a (green ovals). Similar to the
∆Ecoul profiles (Figure 9), enhanced H-bonding is a result of
the much larger guanidinium group interacting with the
charged glutamic acids versus smaller C4 functionality (see
Table 1) for the other ligands.

Differences in per-residue hydrogen bonding (∆H-bonds)
due to R292K are shown in Figure 11b. Significant numbers
of H-bonds are lost for S00-S02 and occur primarily at
positions R152, E276, and R292K. At the latter position,
losses of 0.9 to 1.7 interactions are observed for inhibitors
S00-S02 in contrast with S03 which shows a slight gain
(+0.3). The total change in intermolecular ∆H-bonds is S00
(-3.65), S01 (-3.74), S02 (-3.19), and S03 (+0.90). In
general, the ∆H-bond profile in Figure 11b for inhibitor
S03 is more flat compared with the other ligands as was
similarly observed for the ∆∆Ecoul profile shown in
Figure 9.

A visual examination of MD trajectories reveals that the
S03 glycerol group becomes more ordered and locked in
place as a result of the mutation compared with ligands S01
and S02 which show the opposite effect (Figure 12). For
S03, the R292K side chain also becomes ordered, and this
probably coincides with the slight overall increase in H-bonds

Figure 11. Hydrogen bond footprints (reduced set as in Figure 8) for ligands with NA. (a) shows the wildtype NA footprint, while
(b) shows the difference footprint for the mutation (R292K - WT).

Figure 12. Comparison of snapshots from the MD trajectories
of ligand S01-S03 with wildtype NA (top) versus the R292K
mutation (bottom). Forty evenly spaced coordinates sets are
presented with only select binding site residues shown for
clarity. The arrow (left) indicates the mutation site, and the
circled residue (top right panel) highlights the greater flexibility
of 292 in the WT complex with S03. Ligand carbon atoms
are colored green.
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for S03 as seen in Figure 11b at select positions. Interestingly,
Arg 292 in wildtype simulations for S03 shows more disorder
vs other ligands (Figure 12, circled residue top right panel).
Greater motion here would likely lead to less H-bonds
occurring with S03 at this position as is observed in Figure
11a (black arrow). And, as a consequence, S03 is expected
to have less reliance on R292 for binding. Distance calcula-
tions from wildtype simulations support this hypothesis;
average ligand carboxylate carbon to R292@CZ distances
are larger for S03 (4.7 Å) versus S00, S01, and S02 (4.3 to
4.4 Å). At the same time, shorter distances are observed
between S03 ligand scaffold atoms at position C4 (see Table
1 for numbering) and protein carboxylate atoms at position
CD for residues E227 (6.0 vs 7.0 - 8.1 Å) and E277 (3.9
vs 5.4 - 5.8 Å). Here too, shortened distances are a likely
consequence of stronger ∆Ecoul (Figure 9a) and H-bonding
(Figure 11a) interactions involving the S03 guanidinium
group with E227 and E277.

Footprint Correlation. Finally, the similarity in some of
the trends for Coulombic interaction energies and number
of H-bonds suggests there may be a quantitative correlation
between these descriptors. Figure 13 shows plots of ∆H-
bonds vs ∆∆Ecoul using the per-residue difference footprints
(R292K-WT) shown in Figures 11b and 13b. Interestingly,
the computed correlation coefficients (r2 values) between
these two terms inversely follow the absolute experimental
binding energies with the weakest binder S00 showing the
strongest correlation (r2 ) 0.90) followed in turn by S01 (r2

) 0.79), S02 (r2 ) 0.70), and S03 (r2 ) 0.45). Inhibitors
observed to lose both Coulombic energy and H-bonding at
specific residues (high r2 values) appear to rely most strongly
on those residues for overall intrinsic binding versus those
with flatter difference footprints (i.e., S02 and S03).

A comparison of the footprint r2 values in Figure 13 with
changes in experimental fold resistance (∆∆GR292K-WT, Table
1) reveals a similar trend for S01 (r2 ) 0.79, 2.76 kcal/mol)
> S02 (r2 ) 0.70, 2.70 kcal/mol) > S03 (r2 ) 0.44, 1.66
kcal/mol). However, since the weakest binder S00 actually
has the second-best fold resistance value (2.07 kcal/mol),
inclusion here in this pattern is not expected. Overall, the

accord between r2 values from plots of ∆H-bonds vs ∆∆Ecoul

with the experimental ordering (both ∆Gbind and ∆∆Gbind)
reinforces our observation that electrostatics in general is
the best descriptor for understanding variation in affinity for
sialic acid-based ligands with neuraminidase.

Conclusion

In this study we have employed explicit solvent all-atom MD
simulations, free energy calculations, and per-residue foot-
print analysis to compute relative binding affinities for sialic
acid-based ligands with wildtype neuraminidase subtype N9
and with a R292K mutant. The overall goal is to characterize
and delineate specific origins of drug resistance. Conver-
gence and stability of the simulations was carefully monitored
through examination of instantaneous structural and energetic
properties including instantaneous computed free energies
of binding (Figure 6), rmsd values from starting structures,
changes in desolvation energy ∆∆Ghyd, and intermolecular
energy components ∆Ecoul and ∆Evdw (Figure 3). Computed
standard errors-of-the-mean are low (Table 2), and all
measures suggest that the simulations are reasonably con-
verged and well-behaved (Figures 3 and 6).

Notably, the MM-GBSA affinities show strong correlations
with experiment (Figure 5, r2 ) 0.76) and in every case
correctly show that loss of binding occurs as a result of the
R292K mutation (Figure 6). In marked contrast to other
systems,40,41 an examination here of binding components
reveal that Coulombic (∆Ecoul), as opposed to van der Waals
(∆Evdw) energy, is the best overall descriptor for understand-
ing variation in affinity with structure as evident by the
significant correlation with experiment (r2 ) 0.93, Figure
7, Table 2). Conversely, ∆Evdw shows little correlation (r2

) 0.23). Overall, our analysis suggests that the strong
correlation of ∆Ecoul with ∆Gbind exptl is a consequence of
the NA binding site being highly charged (Figure 1). Despite
large desolvation penalties, the negative sum obtained for
the ∆Gelectro term (∆Ecoul + ∆∆Gpolar) is in general larger in
magnitude than ∆Evdw (Table 2) suggesting that electrostatics
is the primary driving force for association. The good
correlation obtained between ∆Gelectro and ∆Gbind exptl (r2

) 0.73) reinforces this view.
Given the strong correlation of Coulombic energy with

experiment, origins of resistance were examined through per-
residue decomposition of ∆Ecoul and H-bonding for both
wildtype and difference (R292K-WT) footprints. Residue-
based decomposition (Figures 11–13) reveals that the most
potent ligands have (1) less reliance on R292 for intrinsic
binding affinity, (2) enhanced binding via E119, E227, and
E277, and (3) flatter overall ∆Ecoul and ∆H-bond profiles.
Wildtype Coulombic and H-bonding footprints confirm the
importance of the Site I central Arg at position R371 for all
ligands (Figures 11 and 13) and importantly reveal that S03
makes substantially weaker ∆Ecoul (Figure 9) and H-bond
(Figure 11) interactions with residue R292. Weaker interac-
tions with R292 likely contribute to the fact that a mutation
at this site is less detrimental for S03. Coulombic energy
losses localized at position 292 (Figure 9b, ∆∆Ecoul) nicely
parallel the trend for changes in experimental fold resistance
energy (Table 2, ∆∆GR292K-WT) with S03 < S00 < S02 <

Figure 13. Correlation coefficients (r2 values) computed
between two binding site footprints, ∆H-bonds and ∆∆Ecoul,
using the reduced set of binding site residues (N ) 21).
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S01 (Table 1) including the fact S00 is second-most robust
to the mutation. Conversely, more favorable interactions for
S03 are observed at specific sites both in footprints for ∆Ecoul

(Figure 9a, residues E227, E277) and in footprints for
numbers of H-bonds (Figure 11a, residues E119, E227,
E277). Stronger per-residue interactions at these positions
are a function of S03’s larger guanidinium group.

Total H-bond populations for wildtype and R292K also
parallel the experimental ordering (r ) -0.96, r2 ) 0.86).
Despite the fact S03 makes the overall largest number of
H-bonds with NA, counts localized at position 292 are
actually inversely correlated with experiment (Figure 11a)
again suggesting S03 relies less on R292 for wildtype
affinity. Upon mutation, significant numbers of total H-bonds
are lost for ligands S00 (-3.26), S01 (-3.74), and S02
(-3.19), in particular at positions R152, E276, and R292K
(Figure 11b). However, for S03 a slight increase in H-
bonding (+0.90) is observed which can in part be traced to
the fact that both residue 292 and the ligand glycerol side
chain both become slightly more ordered (Figure 12).
Additionally, wildtype simulations show that Arg at 292 is
more disordered in simulations with S03 which helps to
explain why S03 shows less H-bonding at this position
(Figure 11a). Supporting this hypothesis, ligand carboxylate
C1 distances with R292@CZ are longer for S03 than other
inhibitors (4.7 vs 4.3 - 4.4 Å), while ligand scaffold C4
distances to E227@CD (6.0 vs 7.0 - 8.1 Å) and E277@CD
(3.9 vs 5.4 - 5.8 Å) are shorter. The net result is weaker
interactions for S03 with R292 and a more robust resistance
profile.

The highly variable nature of the influenza virus, combined
with the possibility for interspecies infection and transmis-
sion, represents a major challenge for development of both
timely vaccines and development of robust antivirals active
against various strains and subtypes. For this reason, studies
geared toward characterization and increased understanding
of how ligands bind with their antiviral targets are paramount.
In this study, we have participated toward this goal by
demonstrating that all-atom computer simulations with
energetic and structural analysis, for a series of ligands with
neuraminidase from influenza subtype N9, yield computed
free energies of binding that agree well with experiment. In
particular, our simulations correctly predict the effects of a
known mutation at position R292K and provide clues as to
origins of resistance to the mutant. Use of residue-based
decomposition highlights the power of computational meth-
ods for probing specific binding interfaces and for charac-
terization of which specific interactions govern molecular
recognition. Overall, the results significantly enhance ex-
perimental observations. The likelihood of future influenza
pandemics (including the possibility of highly pathogenic
H5N1 strains) highlights the need for additional computa-
tional modeling studies that continue to address binding and
origins of drug resistance.
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Abstract: We explore a conformational transition of the TATTVGYG signature peptide of the
KcsA ion selectivity filter and its GYG to AYA mutant from the conducting R-strand state into
the nonconducting pII-like state using a novel technique for multidimensional optimization of
transition path ensembles and free energy calculations. We find that the wild type peptide, unlike
the mutant, intrinsically favors the conducting state due to G77 backbone propensities and
additional hydrophobic interaction between the V76 and Y78 side chains in water. The molecular
mechanical free energy profiles in explicit water are in very good agreement with the
corresponding adiabatic energies from the Generalized Born Molecular Volume (GBMV) implicit
solvent model. However comparisons of the energies to higher level B3LYP/6-31G(d) Density
Functional Theory calculations with Polarizable Continuum Model (PCM) suggest that the
nonconducting state might be more favorable than predicted by molecular mechanics simulations.
By extrapolating the single peptide results to the tetrameric channel, we propose a novel
hypothesis for the ion selectivity mechanism.

Introduction

Organisms transmit electric impulses by means of cellular
membrane polarization that critically depends on the work
of ion channels. These channels permit passage of specific
ion types across the membrane. Ion channels selective for
potassium such as KcsA1,2 are particularly interesting as they
solve a nontrivial problem of selecting larger K+ over smaller
Na+ ions. Despite the wealth of information derived from
both experimental1–4 and computational5–18 studies of potas-
sium channels, the mechanism of selectivity in these biologi-
cal machines remains too difficult to tackle as it requires
probing the multi-ion permeation transition states.3–5,7,8,11–18

From the computational perspective, this task demands

computing multidimensional potentials of mean force (PMFs)
for which efficient tools have been lacking.19–36

Recently, we have developed and generalized the gradient-
augmented Harmonic Fourier Beads (ggaHFB) method21–23

that allows studying rare events in complex molecular
systems by extending Fukui’s intrinsic reaction coordinate
(IRC) approach37,38 with the help of the multidimensional
free-energy gradient.22,23,39,40

In the present paper we apply the ggaHFB methodology
to study an important functional transition of the signature
peptide TATTVGYG of the KcsA selectivity filter that
pinches the filter shut by flipping its V76 carbonyl group
away from the channel axis coupled with the V76 side chain
rotation in response to lowering the K+ concentration.1,3,4

The V76 carbonyl group flip in the KcsA channel is
associated with the RL to pII backbone conformational
transition at the G77 residue of the signature peptide and is
believed to switch the selectivity filter from a conducting
(RL) to a nonconducting (pII) state. This transition has been
alluded to by X-ray crystallography that detected a partial
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flip of the V76 backbone carbonyls in the wild type KcsA
upon lowering K+ concentration1,2 and recently a more
pronounced flip in the E71A mutant.41 Similar transitions
have been observed in numerous molecular dynamics (MD)
simulations of KcsA7,8 and other related channels.42–44

Interestingly, X-ray crystallographic studies indicate that the
RL to pII backbone transition is accompanied by rotation of
the V76 side chain. However, to the best of our knowledge,
previous MD simulations of the KcsA and related potassium
channels did not report such a rotation. Furthermore, while
the carbonyl flip into pII state observed by X-ray crystal-
lography preserved the 4-fold symmetry of the channel, the
MD simulations reported only a single strand out of four
identical strands to undergo the RL to pII transition, thus
breaking the symmetry of the channel.

It is possible that averaging over the four strands of the
filter might artificially diminish the extent of the transition
seen by the X-ray crystallography, thus masking the sym-
metry breaking. However, unambiguous demonstration of
the symmetry breaking requires assessing the free energy of
the conformational transition in the full tetrameric channel.
Although possible to accomplish with the help of the ggaHFB
method, this task is computationally intensive as it requires
free energy optimization of a transition path ensemble for a
relatively large system. On the other hand, exploring the same
transition using a single peptide might provide useful insights
into the function of the tetrameric channel with reduced
computational burden. In particular, the intrinsic free energy
profile should provide relative free energies of the RL and
pII states along with the corresponding free energy barrier
outside the channel environment and thus suggest whether
multiple transitions inside the channel are likely.

We define the intrinsic free energy profile of the peptide
as that of a single peptide in water. Our choice of water
medium has been motivated by the following observations.
The distributions of the Ramachandran dihedral angles of
various residues in the existing protein structures resemble
those from the corresponding adiabatic maps in water but
differ markedly from those in gas phase.45–49 Even though
KcsA is a trans-membrane protein, when fully assembled
and in conducting state, water molecules can access the back
of the selectivity filter, where they participate in hydrogen
bonding with E71 and D80 residues (not present in our
model).1,2,15,50 Additional water molecules reach behind the
selectivity filter to interact with other residues of the signature
peptide in the nonconducting state.2,3 Furthermore, the filter
is known to conduct water with and without the ions and
hence has a water accessible interior.1–3,51 Therefore, we feel
that the study of the behavior of a single selectivity peptide
in water will provide useful insights for understanding the
behavior of the same peptide in the tetrameric channel.

This paper is organized as follows. First, we review the
ggaHFB methodology for finding minimum adiabatic po-
tential energy paths and minimum free energy transition path
ensembles and computing corresponding energy profiles.
Combining the ggaHFB transition path ensemble optimiza-
tion and free-energy evaluation capabilities with the available
X-ray structural information, we then explore the intrinsic
free energy profile of the signature peptide underlying the

flip of the V76 carbonyl from conducting into the noncon-
ducting state.52–56 Furthermore, we evaluate the effect of the
V76 side chain rotation on the backbone transition. To de-
rive additional support for the functional importance of
the specified transition to the KcsA channel, we compare
the free energy profile of the wild type peptide to that of the
GYG to AYA mutant. Note that a closely related G77A
mutant either abolishes the selectivity57 or abrogates the
activity of the channel.58 To diffuse any doubts regarding
the choice of the water environment for our study, we
examine the changes to the functional transition upon
removing the peptide from water and placing it into gas
phase. Here we fully utilize the ggaHFB capabilities in
finding minimum adiabatic potential energy pathways and
computing the corresponding energy profiles via the general-
ized line integral formalism. Finally, we provide some
benchmarks to lend credence to the computed energy profiles
in water. In particular, we gauge the molecular mechanical
(MM) CHARMM22 force field59,60 against a popular Quan-
tum Mechanical (QM) Density Functional Theory model,
namely B3LYP61–63 with a 6-31G(d) basis set. To account
for the solvent contribution, we employ the Generalized Born
Molecular Volume (GBMV)47,64 and Polarizable Continuum
Model (PCM)65–68 with the MM and QM energy functions,
respectively.

Methodology

Given the novelty of the employed transition path and path
ensemble optimization technique-the generalized gradient
augmented Harmonic Fourier Beads method-that makes this
study possible, we briefly describe the main points of the
method in the following paragraphs.

1. Reactive Coordinate Space (RCS) and Biasing
Potential. The generalized gradient-augmented Harmonic
Fourier Beads (ggaHFB) method considers an arbitrary system
of N atoms described by 3N generalized coordinates Q )
(q1, · · · ,q3N), and, equivalently, by 3N Cartesian coordinates
X ) (x1, · · · ,x3N). The method derives the gradient of either
adiabatic potential energy or the free energy of the system with
respect to a selected subset of Se 3N coordinates qj ) (q1, · · · ,qS)
that comprise the reactive coordinate space (RCS) by employing
either biased optimization or biased molecular dynamics (MD)
or Monte Carlo (MC) simulations, correspondingly. The
remaining 3N-S degrees of freedom rj) (qS+1, · · · ,q3N) comprise
the spectator coordinate space (SCS) and do not contribute
explicitly to the energy gradient.

The biasing potential is a linear combination of relatively
stiff harmonic restraints and applies only to the RCS degrees
of freedom centered at a reference configuration qjb,ref )
(q1

b,ref, · · · ,qS
b,ref):22,23

Vb(q1, · · · , qS;q1
b,ref, · · · , qS

b,ref))∑
i)1

S

ki
b(qi - qi

b,ref)2

(1)

Here superscript b indicates the bias, and ki
b is the ith

coordinate bias force constant. This biasing potential allows
deriving the desired energy gradients using a very simple
idea described in the following section.
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2. Adiabatic Potential Energy Gradient from Biased
Optimization. The key idea for computing the energy
gradients is most clearly demonstrated on the example of
the adiabatic potential energy. Let us add the biasing potential
(1) to the total energy of the system U (Q) ) U(qj,rj) and
then perform potential energy optimization on the modified
potential energy surface. Such optimization should reach an
equilibrium point at which the forces from the biasing
potential that apply only to the S degrees of freedom balance
those from the potential energy. Because the forces on the
remaining 3N-S degrees of freedom become identically zero
due to optimization, the equilibrium point provides the
gradient not of the full potential energy but instead of the
adiabatic potential energy. Therefore, the biased optimization
yields the gradient of the adiabatic potential energy in RCS.
The following equations summarize the above.

∂U(q, r)

∂qi
|
q)[q]b,r)[r]

)-∂V(q)

∂qi
|
q)[q]b

)-2ki
b([qi]b -

qi
b,ref), for i) 1, · · · , S

∂U(q, r)

∂qi
|
q)[q]b,r)[r]

) 0, for i) S+ 1, · · · , 3N (2)

The square brackets indicate the local minimum on the
modified potential energy surface. This procedure effectively
reduces the full potential energy surface of 3N degrees of
freedom to the adiabatic potential energy surface of S e 3N
degrees of freedom.

It is worth noting that in order to compute the adiabatic
potential energy gradient on steep slopes in the vicinity of
transition states one has to use somewhat stiff springs.
Otherwise the minimum on the modified energy surface will
slide downhill close to the corresponding minimum on the
full energy surface providing little or no information about
the transition state region. This remark also applies to the
free energy gradient discussed in the next paragraph.

3. Free Energy Gradient From Biased Simulations. The
idea used to derive the gradient of the adiabatic potential
energy can be applied to derive the gradient of the free energy
from biased simulations. For the proof of this statement we
refer the reader to the previous work22,23,39,40 and only
summarize the results here. It has been demonstrated that
for somewhat stiff Cartesian restraint (1) with reference
configuration xjb,ref in RCS, one can compute the correspond-
ing Cartesian free energy gradient via eq 3a.22,23,39,40

∂Wu(x)
∂xi

|
x)〈 x〉b

≈-2ki
b(〈xi〉

b - xi
b,ref) (3a)

Similarly, for the restraint (1) in generalized coordinates
centered at qjb,ref the corresponding free energy gradient is
given by eq 3b.23

∂Wu(q)
∂qi

|
q)〈q〉b

≈-2ki
b(〈qi〉

b - qi
b,ref)+ kBT

∂ln |J(q)|
∂qi

|
q)〈q〉b

(3b)

Here Wu is the unbiased free energy, kB is the Boltzmann
constant, T is the simulation temperature, and |J(qj)| is the
ensemble-reduced Jacobian for the transformation from

Cartesian to the generalized coordinates. Note that eq 3a is
practically identical to eq 2 for the adiabatic potential energy
gradient, where the biased ensemble average 〈qj〉b ) (〈q1〉b,
· · · ,〈qS〉b) replaces the local minimum [qj]b configuration. The
additional logarithmic Jacobian term on the right-hand side
of the generalized gradient expression 3b is the consequence
of using Cartesian MD or MC propagators with the nonlinear
restraints.23,69 Unlike the case for the adiabatic potential
energy gradient, the free energy gradient expression is
approximate.

The quality of the free energy gradient depends on the
stiffness of the harmonic restraint22,23 and on the quality of
the corresponding configuration averages. To achieve the
highest quality, one can either run a single very long
simulation or run several short simulations and then combine
the results into the cumulative average. We prefer the latter
approach for accurate free energy calculations as it allows
monitoring convergence of the gradient. Specifically, running
P batches of short MD or MC simulations of equal length
subject to the restraint (1) provides P sets of averaged
coordinates or “evolved beads” 〈qj〉b,j ) (〈q1〉b,j, · · · ,〈qS〉b,j)
for a given reference bead, where j is the batch number.
These averages could then be easily combined to yield the
higher quality cumulative average:

〈q〉
b
) 1

P∑
j)1

P

〈q〉b,j (4)

Importantly, the averaged configuration provides the com-
plete free energy gradient in RCS and not just one of its
components:

∇ Wu(q)|〈q〉b ) (∂W u(q)

∂q1
|
〈q〉b

, · · · ,
∂W u(q)

∂qS
|
〈q〉b) (5)

This property of the ggaHFB method is a great advantage
over the histogram-based free energy estimates that require
much larger arrays of simulations to populate multidimen-
sional histograms.22,23,39,40,70,71 Therefore, the ggaHFB
method offers a practical alternative to the conventional
umbrella sampling simulations with weighted histogram
analysis method (WHAM).70,71

The ability to compute the free energy gradient efficiently
makes it possible to perform gradient-driven optimization
on free energy surfaces and ultimately to find minimum free
energy transition path ensembles.

4. Minimum Adiabatic Energy Transition Path. The
ggaHFB method as a path finding tool belongs to the class
of double-ended reaction path methods that require a reactant
and a product state to describe a transition of interest.19–26,72–79

Importantly, the ggaHFB method finds reaction or transition
paths that are invariant with respect to coordinate transfor-
mations. The concept of invariant reaction paths, called
“intrinsic reaction coordinate” (IRC), has been developed
by Fukui for the full potential energy surfaces37,38 and has
been further elaborated by many authors since.26,75,80–85 In
simple terms IRC represents the center curve of the reaction
path region that follows the invariant energy gradient.

In particular, in Cartesian coordinates the IRC curve
satisfies the following simple condition
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∇ ⊥ U(X)) ∇ U(X)- nb(X)
nb(X) · ∇ U(X)

nb(X) · nb(X)
) 0b (6)

where nb(X) is the curve tangent and 0b is the null vector.
Importantly, for nonlinear coordinates the direction of the

gradient vector has to be corrected using the corresponding
contravariant metric tensor G that potentially depends on all
3N degrees of freedom:

G) (gij)) (∑
k)1

3N ∂qi

∂xk

∂qj

∂xk
) (7)

otherwise different nonlinear coordinate systems will yield
differentreactionpathsforthesamestationarypoints.37,38,80–83,85

Thus, to be invariant the transition path curve in nonlinear
coordinates must satisfy the following more complicated
condition

(G ∇ U(Q))⊥ )G ∇ U(Q)- nb(Q)
nb(Q) · (G ∇ U(Q))

nb(Q) · nb(Q)
) 0b

(8)

where nb(Q) is the curve tangent in the nonlinear coordinates.
Both eqs 6 and 8 apply also to the adiabatic energy

surfaces. Because the system of eq 8 is somewhat compli-
cated by the need to compute the metric tensor, the ggaHFB
method employs Cartesian coordinates for the path curve
optimization instead of the generalized coordinates.

5. Minimum Free Energy Transition Path Ensemble.
Using the free energy gradient, the ggaHFB method general-
izes the concept of the Fukui’s IRC37,38 to free energy
surfaces. In deriving the free energy gradient the SCS degrees
of freedom orthogonal to RCS are averaged over, which
results in each point in the RCS representing an ensemble.
Thus, the ggaHFB method finds continuous curves that
connect the provided reactant and product ensembles through
a series of transition and intermediate state ensembles. These
curves must satisfy the condition that the invariant free
energy gradient be tangential to the path curve at any point.
In particular, the ggaHFB method uses the straightforward
generalization of eq 6 to free energy surfaces in Cartesian
coordinates:

∇ ⊥ Wu(〈x〉b)) ∇ Wu(〈x〉b)- nb(x)
nb(x) · ∇ Wu(〈x〉b)

nb(x) · nb(x)
) 0b

(9)

As noted above, working with nonlinear coordinates
requires computing logarithmic Jacobian corrections to the
free energy gradient. Furthermore, finding invariant paths
requires additional metric tensor corrections.19,74 No such
complications arise in Cartesian coordinates, which is why
the ggaHFB method employs these coordinates to optimize
transition path ensembles.

6. Transition Path Optimization. To optimize a transi-
tion path in Cartesian coordinates, we take K unique
configurations { Qk} k)1,K that gradually progress from the
reactant to the product and assign them to a uniform grid
{Rk ) (k - 1)(K - 1)} k)1,K with mesh size of ∆R )
1/(K-1). If initial configurations Qk ) Q (Rk) are unavail-
able they could be derived via a linear interpolation or by

the activated evolution procedure21 that is similar to the
growing string method.86 Using these K configurations, we
obtain up to K corresponding Fourier amplitudes for each
degree of freedom by applying the standard Fourier transform
integration with the trapezoidal rule on the grid87

bn
i ) ∑

k)1

K-1

(fn
i,k + fn

i,k+1)∆R (10)

where f n
i,k ) [qi(Rk)–qi(0)–(qi(1)–qi(0))Rk]sin (nπRk).

This procedure globally interpolates between all the K
points, yielding a continuous Fourier curve21,88 which is an
analytical function of a progress variable R ∈ [0;1]:

qi(R)) qi(0)+ (qi(1)- qi(0))R+∑
n)1

K

bn
i sin(nπR)

(11)

We then redistribute the K beads along the path curve such
that they conform to a particular metric. Usually, we
reposition the beads to make the arc lengths between adjacent
beads of equal length in the RCS.

The newly redistributed beads serve as reference beads to
compute the corresponding adiabatic potential energy gra-
dients or the free energy gradients via the evolution
procedures described in sections 2 and 3. Thus, for each
reference bead qjk

ref )qj(Rk
ref), the evolution returns either the

minimized [qj]k
b ) ([q1]k

b, · · · ,[qS]k
b) or the averaged bead 〈qj〉k

b

) (〈q1〉k
b, · · · ,〈qS〉k

b) also called the “raw evolved bead”.
The ggaHFB method borrows the idea of redistributing

beads along the curve and reparametrizing the curve given
the redistributed beads from the string method.73–75,86 All
the other essential ingredients of the ggaHFB method, such
as the multidimensional energy gradient derived on the fly
from the harmonic biasing potential and the Fourier repre-
sentation of both the path and of the corresponding energy
gradient (see below) employed in the energy profile integra-
tion via generalized line integral as well as optimization
strategies, have been obtained from sources independent of
the string method despite apparent similarity.21–23,37–40,79,88,104

In the following discussion, we omit the complementary
SCS coordinates for clarity. These coordinates are assumed
to be either completely minimized or averaged over and do
not explicitly affect either the path or its energy. Optimization
implies that the SCS coordinates are passed along either
through dynamics restart files or through the complete
coordinate files. In addition, it is assumed that the changes
in the SCS coordinates between the beads are continuous.

For brevity, we only discuss how to drive optimization of
the transition path ensembles and compute the corresponding
free energy profiles. The same strategies apply to finding
the transition paths on adiabatic potential energy surfaces
and computing the corresponding energy profiles. In this
case, the adiabatic potential energies could also be calculated
exactly for all the points along the path and compared to
those computed using the ggaHFB’s generalized line integral
formalism.

Substituting the raw evolved beads into eq 3a gives
estimates of the free energy gradients for each bead. These
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gradients are then used in the steepest descent step to generate
the “enhanced evolved beads”:

qk
SD ) 〈q〉k

b + γk ∇ Wu(〈q〉k
b) (12)

Here γk is the parameter that controls the SD step size for
the kth bead. In the present paper we use the uniform step
size parameter γ for all the beads for simplicity.

Following the Fourier transform of the enhanced beads to
obtain new Fourier amplitudes, redistribution of the beads
along the resulting curve provides new reference beads.
These reference beads are realigned to maintain the coordi-
nate system. For this purpose we invoke a mass-weighted
best-fit procedure in a suitable space, usually RCS, to enforce
the Eckart conditions on the beads.22,79,89–91 In cases where
only a few coordinates are available for the best fit or if
their geometric arrangement breaks down the standard best
fit procedure, simpler alignment methods could be used. The
final realigned beads then replace the previous reference
beads in the next round of evolution. This procedure is
repeated until convergence of the path, i.e. until the path
curve changes cease. The final optimized curve represents
an invariant minimum free energy transition path ensemble
that satisfies the Fukui’s IRC criteria.37,38

The convergence rate of the ggaHFB method depends to
some extent on the employed bias force constant and step
size parameter. Therefore, devising an optimization strategy
to achieve the fastest convergence possible is desirable and
is an active area of research in our laboratory.

7. Computing the Free Energy Along the Fourier
Path. Given a Fourier path in the generalized multidimen-
sional coordinate space and the corresponding free energy
gradients, we can compute the free energy profile along that
path via the generalized line integral formalism. To achieve
the highest accuracy, we Fourier transform both the evolved
beads (4) and the corresponding free energy gradients (5)
along the path. With the continuous Fourier representations
of the forces and the path, we could then analytically evaluate
the corresponding reversible work line integral passing
through the evolved beads:

Wu(R))∑
i)1

S ∫0

R [∂Wu(R)
∂qi

q ′
i(R)]dR (13)

In practice, we evaluate the generalized line integral of the
second order in eq 13 on a fine uniform grid with L.K
quadrature points.

This procedure provides the free energy or the potential
of mean force (PMF) profile as an analytical function of the
progress variable. Unlike umbrella sampling with WHAM,
the interpolation-based ggaHFB free energy integration
procedure does not require overlap between the windows.
Furthermore, the ggaHFB integration procedure allows
natural decomposition of the free energy into contributions
from individual coordinates.

The analytical form of the energy profile and that of the
corresponding path provided by the ggaHFB method renders
pinpointing the energy extrema and their accurate RCS
coordinates particularly trivial. One can easily find the values
of the progress variable R corresponding to extrema on the

energy profile and then substitute these values into eq 11 to
get the matching structures.

8. Summary of the ggaHFB Methodology. In summary,
the ggaHFB method finds the Fukui’s IRC curves on the
adiabatic potential energy surfaces and further generalizes
this approach to Cartesian free energy surfaces. Thus, the
ggaHFB method finds either minimum adiabatic potential
energy paths or minimum free energy transition path
ensembles via a gradient driven optimization procedure.
Optimizing the transition paths and path ensembles in
Cartesian coordinates bypasses the need to calculate the
corresponding metric tensors. The optimized transition paths
provide structural and energetic information about all the
intermediates and transition states connecting given reactants
and products at once. Furthermore, the global Fourier
representation of the path and the forces provide useful means
to control various aspects of the path optimization and
ultimately makes the ggaHFB optimization extremely robust.

Independent from the path optimization, the ggaHFB
method is a practical alternative to the conventional approach
to free energy calculations via umbrella sampling with
WHAM. Advantageously, the ggaHFB method is histogram-
free, which makes it applicable to cases with arbitrary many
dimensions. Even though ggaHFB uses somewhat stiff
springs, it does not require the overlap between the windows
to integrate the free energy profile. Additionally, the Carte-
sian version of the ggaHFB method avoids the need to
compute the logarithmic Jacobian correction that is required
if either WHAM or ggaHFB is used with nonlinear coordi-
nates such as bond distances, angles, dihedrals, etc. to
compute free energy profiles.23,92 Finally, the energy profiles
can be straightforwardly decomposed into contributions from
the individual degrees of freedom that could be useful for
analysis and design purposes.

Results

1. Minimum Free Energy Transition Path Ensembles.
To explore the free energy of the RL to pII backbone
transition of a TATTVGYG signature peptide in water and
the effect of the V76 side chain rotation, we use the ggaHFB
method with two reactive coordinate spaces (RCSs) of
different dimensionalities. Specifically, we include all heavy
atoms of the peptide into RCS1 and derive RCS2 from RCS1
by excluding side chain atoms. The RCS1 surface provides
the free energy of the backbone configuration subject to a
particular side chain orientation. In contrast, the RCS2
surface provides the free energy of the backbone configu-
ration irrespective of the side chains. Unless otherwise stated,
throughout this work we employ molecular dynamics in the
isothermal isobaric NPT ensemble at 298 K and 1 atm using
the CHARMM22 molecular mechanical force field59,60 with
the CHARMM-modified TIP3P explicit water model93–97 to
derive all the required free energy gradients.

Our preliminary free-energy optimization runs revealed
that both the RL and pII states at position 77 are local free-
energy minima of the isolated peptide in water. Interestingly,
the partially flipped, nonconducting conformation observed
by X-ray crystallography at low K+ concentration (PDB code
1R3K) is unstable by itself in water despite the rotation of
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the V76 side chain away from the high K+ concentration,
conducting conformation (PDB code 1R3J). During optimi-
zation of the peptide from the partially flipped state its
backbone, but not the V76 side chain, collapses to the
conducting state conformation.

Therefore, to study the full range of the peptide flip, we
have constructed an initial path that includes both RL and
pII states of G77 backbone. To assess the effect of the V76
side chain rotation, we have included two such rotations by
requiring that the end points have the same V76 side chain
orientation, matching that of the conducting state. Further-
more, we have inserted the crystallographic nonconducting
state with partially flipped backbone and rotated V76 in the
middle of the path (refer to the Supporting Information for
details).

Performing thorough optimization on the RCS1 free energy
surface (see the Supporting Information), we obtain an
intrinsic transition path ensemble for the G77 backbone
conformational transition from RL to pII state in the TAT-
TVGYG peptide in water. Using the RCS1-optimized path
ensemble as the reference we then compute the final free-
energy profile, both coupled with (RCS1) and uncoupled
from (RCS2) the V76 side chain rotation. To elaborate on
the energetics of the backbone transition further, we compute
an analogous optimal path and the free-energy information
for a GYG to AYA mutant. The resulting cumulative PMFs
at different collection times are depicted in Figure 1, and
the representative structures of the wild type peptide are
shown in Figure 2.

The PMFs at the RCS1 level display two events involving
the V76 rotation as two sharp peaks with barrier heights
ranging from 5 to 8 kcal/mol in both directions. Interestingly,
the V76 side chain rotation from the conducting into
nonconducting orientation destabilizes the RL state by 2 to
3 kcal/mol, indicating that the hydrophobic interaction
between the V76 and Y78 side chains provides additional
stabilization of the RL state in the conducting conformation.
The RL to pII backbone transition at position 77 follows the
second, restoring V76 side chain rotation. In the wild type,
the free energy barrier for the backbone transition given a
specific orientation of the side chains (the RCS1 PMF) has
a forward barrier of 6.0 kcal/mol. The pII state is 2.2 kcal/
mol less favorable than the RL state and converts back with
a barrier of 3.8 kcal/mol. In sharp contrast, in the mutant
the forward barrier is only 0.7 kcal/mol and the pII state is
6.3 kcal/mol more favorable than the R-strand. Restoring the
R-strand52–54 state in the mutant requires surmounting a high
7.0 kcal/mol free-energy barrier.

Setting the side chains free (the RCS2 PMF) permits
evaluating the free energy of the backbone transition alone.
As is seen from Figure 1, switching to RCS2 space collapses
the sharp peaks (labeled with arrows) corresponding to the
V76 side chain rotations but leaves the portion of the PMF
underlying the backbone transition from the RL to the pII
state virtually unchanged. In particular, for the wild type
peptide the forward activation barrier is 5.9 kcal/mol, and
the pII state is still less stable than the RL by slightly smaller
1.7 kcal/mol. Restoring the conducting state requires over-
coming a slightly higher barrier of 4.2 kcal/mol. In contrast,
the mutant exhibits a forward barrier of 0.9 kcal/mol and
the relative pII state stabilization energy of 7.0 kcal/mol that
makes the reverse barrier increase to 7.9 kcal/mol.

2. Minimum Adiabatic Potential Energy Paths. To
explicitly evaluate the effect water has on the conformational
transitions of the signature peptide and to further demonstrate
the capabilities of the ggaHFB method, we have computed
the minimum adiabatic potential energy paths for the wild
type TATTVGYG peptide and its GYG to AYA mutant in
gas phase. Both peptides have three threonine and one
tyrosine residues with rotatable OH bonds that were averaged
over in the minimum free energy transition path ensembles
computed in water. The orientation of these hydrogens
significantly perturbs the overall potential energy; therefore,
we include these four hydrogen atoms in the reactive
coordinate space. Thus, by adding the polar hydrogen atoms
to the all-heavy-atom RCS1 we derive the RCS1h for
adiabatic potential energy path optimization.

We have to assign some initial values to the tyrosine and
threonine OH groups, which have two and three rotameric
states, respectively, in order to compute the adiabatic
potential energy paths. The total number of possible initial
path configurations is therefore 21 × 33 ) 54. To control
the configurations, we follow the Protein Data Bank atom
naming convention and use dihedral angles Cε1-C�-Oη-Hη
and CR-C�-Oγ-Hγ for the tyrosine and the threonines,
respectively. Here, we arbitrarily choose dihedral angles of
180, 180, -30, and 0 degrees for the T72, T74, T75, and
Y78, respectively, as the initial conditions for the path

Figure 1. Cumulative PMFs for the conformational transition
of the signature TATTVGYG KcsA peptide and its AYA mutant
from the RL to pII state in explicit water on RCS1 and RCS2
free-energy surfaces at different collection times. The ggaHFB
method employed 89 beads to integrate the free energy
profile. Arrows point to the V76 side chain rotations.
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optimization. To prepare the initial path with these condi-
tions, we fix the RCS1 coordinates and apply stiff harmonic
restraints of 1000 kcal/(mol · rad2) on the corresponding
dihedral angles during an optimization of the hydrogen
positions.

Because the optimization on adiabatic potential energy
surfaces with the bare CHARMM22 molecular mechanical
force field is relatively inexpensive, we have initiated the
ggaHFB optimization using 89 beads. Using 89 beads is
sufficient to integrate the adiabatic potential energy, given
the initial orientation of the four OH bonds. Nevertheless,
optimization of the OH groups requires increasing the
number of beads further to correctly integrate the adiabatic
potential energy. The increase reflects the fact that rotations
of the OH groups correspond to small changes in the RCS1h,
resulting in very sharp transitions along the path. Although
proper integration could be achieved by locally increasing
the number of beads at the sharp transitions leading to
nonuniform bead distributions,23 in the present work we use
uniform grid for simplicity. Thorough path optimization
increases the overall path length dramatically, in the end
requiring 705 beads to properly integrate the adiabatic
potential energy along the path.

The final paths in the gas phase have little if any
resemblance with the paths optimized in water and exhibit
a greater number of local minima and transition states. For
the wild type peptide, the R-strand52–54 disappears almost
completely. First, the G79 residue spontaneously flips into
the C5 conformation and then converts into the C7ax confor-
mation. In the flipped configuration on the reactant side of
the path G79 forms a hydrogen bond with the OH group of
T71 using its carbonyl oxygen. The G79 residue flip
significantly perturbs the rest of the R-strand, which quickly
collapses further residue-by-residue along the path.

In the mutant, the R-strand is annihilated completely in
the reactant basin, where the A79 along with the A77
residues flip into the C7ax conformation. The four residues
V76, A77, Y78, and A79 surround the T71 residue like a
belt, with alternating axial and equatorial configurations,
namely C7ax, C7eq, C7ax, and C7eq, respectively. During the
optimization the mutant pathway deviates substantially from
that of the wild type.

Figure 3 depicts the corresponding adiabatic energy
profiles that underscore the complexity of the changes in the
gas phase. It also provides the benchmarks for the adiabatic
potential energy integration via the generalized line integral
formalism. In particular, comparison of the line integral
energies with the exact adiabatic potential energies from the
CHARMM22 force field shows the accumulated errors of
0.07 and 0.12 kcal/mol for the wild type and mutant adiabatic
energy profiles, respectively. We consider this a very good
agreement between the generalized line integral energy and
the exact energy profiles.

The V76 side chain rotations (labeled with arrows) have
been preserved in both wild type and mutant paths, although
in some cases they have been coupled with other structural
rearrangement as seen in Figure 3. The forward and reverse
barrier heights for the V76 side chain rotation vary but are
similar to those in water.

Overall the gas phase structures are more compact than
the ones in water and establish as many intramolecular
hydrogen bonds as possible. Given the complexity of the
adiabatic paths and their divergence from the structures
obtained by either the X-ray crystallography or by the free
energy optimization in water, we omit a detailed description
of the structural changes along the path and simply provide
the corresponding trajectories in Supporting Information.

3. Comparison of the MM and QM Energy Profiles.
A. Gas Phase. Because the present paper investigates an

Figure 2. Representative structures from the free energy transition path ensemble of the wild type TATTVGYG signature peptide
of the KcsA selectivity filter in explicit water. The values of the progress variable R provided relate structures to the free energy
profile of the wild type peptide in Figure 1.
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important conformational transition of the TATTVGYG
signature peptide from the KcsA potassium channel, it might
be useful to assess the molecular mechanical (MM) force
field employed. Of particular interest is evaluating the
energetics of the signature peptide and its mutant along the
path optimized in water. To establish useful benchmarks,
we first compute the gas phase adiabatic energy profiles along
the minimum free energy transition path ensembles in the
RCS1. In particular, we compare the MM energy profiles
with one of the most popular density functional theory
models, namely B3LYP, with the 6-31G(d) basis set as a
high-level quantum mechanical (QM) model (see the Sup-
porting Information for details). This model is not expected
to produce accurate energy profiles when it comes to
dispersion interactions between the Y78 residue and the V76
side chains and hence should be used with caution.98–101

Figure 4 shows the corresponding adiabatic potential
energy profiles for the peptides with the rotatable OH bonds
fixed at the conformation used as initial condition for the
path reoptimization in gas phase. Interestingly, the energy
profiles obtained with MM and the QM models for the same
path differ substantially. The V76 side chain rotation barriers
appear reduced in the QM model.

Both the MM and QM models favor the pII state over the
R-strand. The QM model predicts the R-strand to be much

less stable than the pII state in the wild type but relatively
more stable in the mutant peptide. In contrast, the MM model
suggests that the R-strand is much more stable in the wild
type peptide, not the mutant. It is likely that the adiabatic
energy surfaces of the MM and QM models are significantly
different in the gas phase, and such single point energy profile
comparisons should be taken with caution.

B. Implicit SolVent. As mentioned above, we are primarily
interested in the energetics of the peptides in water and not
in the gas phase. After all, the transition path ensembles for
the functional conformational transitions of the peptides have
been optimized using the MM model in the explicit water.
To compare the MM with QM models in water, we choose
the Generalized Born Molecular Volume (GBMV)47,64 and
Polarizable Continuum Model (PCM)65–68 implemented in
Gaussian 03102 implicit solvent models, respectively. Using
the free-energy optimized transition path ensembles in
explicit water as reference profiles, we have performed
optimization of all the degrees of freedom orthogonal to the
RCS1 and subject to the same dihedral restraints on the
rotatable OH bonds as discussed above with the MM-GBMV
model and then computed single point QM-PCM energies
for all the beads along the path (see the Supporting
Information for details). The results are provided in Fig-
ure 5.

The MM-GBMV model yields the free-energy profiles that
are in very good agreement with the explicit solvent

Figure 3. Adiabatic potential energy profiles along the
optimized reaction paths of the signature TATTVGYG KcsA
peptide and its AYA mutant in gas phase. The ggaHFB
method employed 705 beads to integrate the potential energy
with the RCS1h (see text for details) - solid lines; the
CHARMM22 exact energies are shown in dashed lines.
Arrows point to the rotations of the V76 side chain.

Figure 4. Gas phase single point energy profile along the
R-strand to pII state conformational transition of the signature
TATTVGYG KcsA peptide and its AYA mutant in water. MM
- uses the bare CHARMM22 force field, QM - B3LYP/
6-31G(d) Density Functional Theory model. Arrows point to
the rotations of the V76 side chain.
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calculations (Figure 1), thus further validating the intrinsic
free energy profiles. We cannot expect better agreement
between the two profiles given the fixed conformations of
the rotatable OH bonds necessary to compute the adiabatic
energy profile with GBMV.

The QM-PCM model produces energy profiles very
different from those of the MM-GBMV model, and most
importantly does not favor the RL state over the pII state in
the wild type peptide. In the mutant, on the other hand, the
RL state remains unstable with the QM-PCM model.

Because we have performed optimization on the water
modified RCS1 free energy surfaces of the peptides with the
MM model and explicit water any comparison with other
surfaces that have not been optimized do not warrant good
agreement, unless the surfaces are exactly the same. This
conflict could in principle be resolved by the QM-PCM
optimization of the product, reactant, and a few key
intermediates, which unfortunately presents a significant
challenge at present.

Discussion

The finding that the signature peptide taken from the partially
flipped nonconducting state (PDB code 1R3K) collapses back

into the conducting state in water despite the V76 side chain
rotation shows the intrinsic width of the peptide RL basin.
Furthermore, it suggests that either the channel provides
additional interactions to stabilize the partially flipped
backbone structure or that only one of the four strands of
the tetrameric channel undergoes the full transition. If the
latter symmetry breaking were to occur, the apparent
configuration observed by X-ray crystallography would
correspond to the average over four strands, thus artificially
reducing the extent of the transition in a single peptide.

The fact that the free energy profiles for the RL to the pII
transition are relatively insensitive to the position of the side
chains (see Figure 1) reflects the robustness of the backbone
transition. The forward and reverse free energy activation
barriers in the wild type peptide are 5.9 and 4.2 kcal/mol.
Interestingly, previous calculations of an even lower dimen-
sional PMF for a similar transition inside the wild type KcsA
channel in the presence of two ions gave a rough estimate
of the free energy barrier between 0.5 and 4.0 kcal/mol.8 In
sharp contrast, the mutant exhibits a forward barrier of 0.9
kcal/mol and the reverse barrier of 7.9 kcal/mol.

The width of the RL basin in the intrinsic free energy
profile of a single peptide might determine the range of a
local dilation/contraction of the tetrameric KcsA channel at
the V76 carbonyl ring. If the V76 carbonyl were pushed away
from the channel axis beyond the limits of the RL basin, the
peptide would go over the transition barrier and into the
nonconducting pII state. We emphasize that by local dilation/
contraction of the channel we imply the change in the
distance between the V76 carbonyls associated with the
backbone motions within the bounds of the RL basin and
not with the transition from RL to pII or back.

The full RL to pII transition has been demonstrated to be
unnecessary for the ion selectivity, at least in a synthetic
channel with the D-Ala residue in place of G77.3 Note that
the wild type KcsA channel, in addition to K+, permits ions
of larger size, namely Cs+ and Rb+, which are expected to
pass the V76 carbonyl ring without triggering the transition
from RL to pII.4 Such a wide range of dilation/contraction
would not have been possible if G77 was substituted for
regular Ala, as the width and the depth of the RL basin would
have been dramatically reduced as seen from the PMFs for
the mutant depicted in Figure 1. Note however, that the AYA
mutant would be sterically prevented from forming the
conducting R-strand conformation in the tetrameric channel.3

In an effort to validate the results obtained with the MM
force field in explicit water we have profiled the energetics
along the paths using MM and QM methods both in gas
phase and in implicit solvent. The results of these calculations
are summarized in Figures 4 and 5 that highlight the stark
disagreement between the MM and QM models. Although
QM models usually have higher fidelity than MM models,
the particular DFT method used in this work, namely the
B3LYP functional, is well-known to fail to account for short-
range dispersion interactions necessary to properly describe
the energetics of the hydrophobic interactions such as those
between V76 and Y78 side chains.98–101 Higher level,
more expensive ab initio methods that properly account for
the dispersion suggest that the interactions between the CH

Figure 5. Implicit solvent single point energy profile along
the R-strand to pII state conformational transition of the
signature TATTVGYG KcsA peptide and its AYA mutant in
water. MM-GBMV - uses the CHARMM22 force field with the
Generalized Born Molecular Volume implicit solvent model,
QM-PCM - B3LYP/6-31G(d) Density Functional Theory with
the Polarizable Continuum Model implicit solvent model.
Arrows point to the rotations of the V76 side chain.
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bonds of the V76 and the phenol ring of the Y78 could favor
the R-strand by about 1 kcal/mol.101,103 Additional discrep-
ancies between the MM and QM in this work may arise due
to the fact that no optimization has been performed at the
QM level of theory. Therefore, the differences between the
QM and MM models should be interpreted with caution.

It appears that the stability of the pII state in the wild type
peptide might be overestimated by the QM model with
implicit water, because it would require at least 20 kcal/mol
to assume the conducting conformation in the tetrameric
channel. On the other hand the MM model with implicit
water predicts the RL and pII configurations to be nearly
degenerate. If the QM-PCM model more accurately repro-
duced the energetics of the solvated peptide even without
optimization, the ground or resting state of the wild type
KcsA channel would be the nonconducting pII state. Thus
the channel would have to be activated by a conformational
change from the pII resting state into the R-strand state to
conduct ions. This would only be possible due to a strong
perturbation such as strong attraction of the ions in the lumen
of the tetrameric channel to its carbonyl oxygens.

The switching between the nonconducting and conducting
state and the functional contraction/dilation of the tetrameric
KcsA channel would require a certain balance between the
electrostatic repulsion of the V76 carbonyls and the free
energy of the backbone rotation of the residue at position
77. Because the electrostatic repulsion can be relaxed by
transiently flipping one or more of the carbonyls out from
the RL into the pII state, the filter must also ensure to
favor the RL over the pII state at least in the presence of
ions in the lumen of the filter. The potassium channel seems
to have achieved the R-strand stabilization by using a G
residue that has a high propensity for the RL configuration
at position 77 and in addition by the hydrophobic interaction
between V76 and Y78 side chains. The importance of the
hydrophobic interaction is supported by the experimental
observation that the V76A mutant abrogates tetrameric
assembly of the channel.58 Taking the above into consider-
ation, it appears that the free energy profiles computed with
the MM model in explicit water agree better with the
proposal than the corresponding single point energy profiles
obtained with B3LYP/6-31G(d)-PCM QM model.

In the absence of the actual tetrameric channel in our
model, the bulk water better reproduces the environment of
the KcsA selectivity filter than the gas phase and therefore
provides useful insights into the channel function. In
particular, the differences between the adiabatic energy maps
of the peptide residues in water and gas phase suggest that
the gas phase transition pathways must deviate strongly from
those of the transition path ensembles optimized in water.
This is particularly true of the RL region that is forbidden in
gas phase.48,49 The ggaHFB optimization of the adiabatic
paths in gas phase explicitly demonstrates that water plays
an active and important role in defining the intrinsic path
and the energetics of the peptide backbone transition.

The outcome of the gas phase optimization can be
predicted based on the previous studies of the glycine and
alanine dipeptides.48,49 In particular, the referred work
demonstrated that the RL configurations collapse into the C7ax,

while pII configurations collapse into the C7eq.48,49 These
are the exact changes we observe upon the adiabatic potential
energy optimization in gas phase. The final optimized paths
in gas phase are rather complex (see Figure 3) and seem
irrelevant for the functional transition of the selectivity
peptide in the KcsA channel. On the other hand the pathways
in water show very good qualitative agreement with the
peptide conformations observed in the tetrameric channel.

Finally, based on the present findings, we are able to
propose a novel hypothesis for the mechanism of ion
selectivity in the tetrameric KcsA channel. Specifically, we
conjecture that in its conducting R-strand state the carbonyl
rings should contract around the ion entering the channel
and that this contraction would propagate to the nearby
carbonyl rings along the channel axis (see Figure 1S in the
Supporting Information for an illustration). Because ions are
believed to pass the KcsA filter stripped of all but two water
molecules that cotranslate with the ion while hydrogen
bonding to the carbonyls, these water molecules will experi-
ence greater difficulty to pass neighboring carbonyl rings
due to the contraction, in turn impeding the ion movements
along the channel.

This hypothesis could explain why the channel selects
larger K+ over smaller Na+ ions. Specifically, we anticipate
that smaller Na+ ions would contract the carbonyl rings to
a greater extent than the larger K+ ions thus impeding the
passage of the cotranslating water molecules to a greater
degree. With water passage impeded the ions themselves
must in turn slow down.

Our hypothesis suggests that in the absence of ions the
KcsA channel should stay open to water permeation unless
one of the four V76 carbonyls flips out pinch-shutting the
channel. Indeed, the KcsA channel has been experimentally
demonstrated to conduct water in the absence of permeating
ions.51 The partial flipping of the carbonyls (while still within
the RL basin) might serve a selectivity purpose, whereas a
complete flip (transition into the pII basin) can be used to
gate the channel.8 To provide further support of this
hypothesis we are currently performing an optimization of
several transition path ensembles for ion-water copermeation
through the tetrameric KcsA selectivity filter. The results of
this work will be reported in a forthcoming publication.

To conclude, we have explored an intrinsic free energy
landscape of an important functional transition of the
signature peptide from the KcsA selectivity filter that is
responsible for locally dilating/contracting the channel at the
V76 carbonyl ring, in addition to switching the channel
between conducting and nonconducting states. We have
found that the wild type peptide intrinsically favors the
conducting state due to the combination of the high G77
backbone propensity for the RL configuration and the
stabilizing hydrophobic interaction between V76 and Y78
side chains. In sharp contrast, the mutant strongly favors the
nonconducting state. However, additional steric effects in
the tetrameric channel that are absent in the present study
are expected to prevent formation of the conducting con-
formation in the mutant.

We have found the RL to pII transition to be exceptionally
robust and intrinsically funneled toward the conducting state
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in the wild type KcsA peptide at the MM level with explicit
water. Although the intrinsic free energy profiles have been
validated using the MM with an implicit water model, efforts
to gauge performance of the MM model against the QM model
indicated that our results should be interpreted with caution.
Based on the QM-PCM model it may be possible that the
ground state of the channel in the absence of ions could in fact
be the nonconducting state and that the conducting state would
only form upon ion entrance into the lumen of the channel.
Nevertheless, the present study has allowed us to propose a
novel hypothesis for the ion selectivity within the KcsA channel
in which local contraction of the channel interior in response
to the ion presence regulates copermeation of water through
the channel to a degree that is inversly proportional to the ion
size. Work is currently underway in our laboratory to test the
proposed hypothesis in the tetrameric KcsA channel model. We
hope that the present work will stimulate future transition path
ensemble studies of rare events in complex molecular systems.
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Abstract: The conformational preference for different φ/Ψ backbone torsion angles is a key
determinant of peptide and protein secondary structure. Often, dipeptides are used as models
for understanding protein backbone dynamics and to derive force field parameters. Here, the
question is examined to what extent the conformational preferences in dipeptides reflect the
backbone dynamics in polypeptides and proteins and to what extent an alanine dipeptide-based
backbone torsion parametrization can lead to accurate reproduction of amino acid dependent
φ/Ψ preferences in protein structures. Results from a comparison of the analysis of Protein
Data Bank (PDB) structures with long simulations of selected proteins and amino acid dipeptides
suggest that a common alanine dipeptide-based torsion potential does in fact lead to excellent
agreement between protein simulations and PDB structures. At the same time, the φ/Ψ
preferences in the dipeptides are significantly different, suggesting that dipeptides are not good
model systems for studying protein backbone dynamics.

Introduction
Protein structure and dynamics are essential determinants of
biological function. The structure of most proteins consists
of well-defined three-dimensional folds that are built from
R-helical and �-sheet secondary structure elements with
connecting turns and loops. The ability to form different
secondary structure elements is primarily a reflection of the
conformational flexibility of the polypeptide backbone. There
are essentially two backbone degrees of freedom for each
amino acid residue: the torsion angles φ (C-N-CR-C) and
Ψ (N-CR-C-N). For nonglycine and nonproline residues,
the well-known Ramachandran plot1 of Ψ versus φ identifies
two major minima: RR (φ ) -60, Ψ ) -50) in the R basin
and PPII/C5 (φ ) -60 to -170, Ψ ) 120-170) in the �
basin (see Figure 1), which correspond to R-helical and
extended �-strand/-sheet secondary structures when repeated
over multiple amino acid residues. Secondary minima with
higher relative free energies at RL (φ ) 50, Ψ ) 50) and
C7ax (φ ) 50, Ψ ) -130) are relevant in the formation of
turns and loops. The conformational preferences of proline
are restricted to RR, PPII (φ ) -60, Ψ ) 140), and C7eq (φ

* Phone: (517) 432-7439. Fax: (517) 353-9334. E-mail: feig@
msu.edu.

Figure 1. Schematic overview of major conformational basins
sampled by φ/Ψ backbone torsion angles in nonglycine,
nonproline peptide residues.
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)-75, Ψ ) 75) conformations. Glycine does not distinguish
between positive and negative φ values due to its achiral
nature and therefore visits the right side of the Ramachandran
plot more frequently compared to the other amino acids. The
preference for certain regions of the Ramachandran plot has
resulted in the definition of “allowed” versus “disallowed”
regions that are often applied in the validation of experi-
mental and theoretical structures.2,3 However, extensive
analysis of high-resolution crystal structures has revealed that
a significant fraction of amino acid residues may also exhibit
φ/Ψ torsion angles outside those canonical regions.3-5

Furthermore, the preferences for φ/Ψ torsions vary not just
between proline and glycine but also among nonproline and
nonglycine amino acid residues.6,7 From detailed analyses
in previous studies6,7 and data gathered in this study, it has
emerged that, in the � basin, alanine, tryptophan, phenyla-
lanine, tyrosine, serine, glutamine, glutamic acid, arginine,
lysine, methionine, and cysteine follow a similar energy
landscape with two minima near C5 and PPII that are
connected by a very shallow barrier. Valine, isoleucine, and
to a lesser extent leucine have instead a single, broad
minimum near (φ ) -120, Ψ ) 130) that is intermediate
between C5 and PPII and shifted downward to smaller Ψ
angles. Aspartic acid, asparagine, and to a lesser degree
histidine have an overall much broader � region that extends
to Ψ ) 75 and includes C7eq. Finally, threonine exhibits
four clearly discernible minima in the extended region, two
at Ψ ) 165 and two at Ψ ) 130, all of which are connected
by very shallow barriers. The energy landscape in the RR

basin also varies between different amino acids. Alanine,
tryptophan, leucine, glutamine, arginine, glutamic acid, and
methionine predominantly sample RR (φ ) -60, Ψ ) -50),
while phenylalanine, tyrosine, asparagine, serine, threonine,
histidine, lysine, aspartic acid, and cysteine also sample a
second minimum at (φ ) -100, Ψ ) 0) to a significant
degree. Valine and isoleucine stand out by an extended low-
energy region that includes (φ ) -100, Ψ ) 50), which
corresponds to π-helical conformations. These subtle but
significant variations in φ/Ψ preferences can be rationalized
in part by examining correlations with side-chain torsions.7

Finally, a special case is given by amino acids that im-
mediately precede proline.3,8,9 These pre-Pro residues do not
significantly populate conformations near (φ ) -90, Ψ )
0) in the RR basin but instead populate so-called � conforma-
tions near (φ ) -140, Ψ ) 70).

Blocked alanine dipeptide (see Figure 2) is commonly
studied as a prototype of nonglycine/nonproline protein
backbones since it allows full sampling of the φ/Ψ confor-
mational space without the additional complexity of side-
chain degrees of freedom. Numerous computational and
experimental studies of alanine dipeptide have explored its
thermodynamic,10-14 kinetic,13,15,16 and spectroscopic17,18

properties. Furthermore, alanine dipeptide and sometimes
alanine tri- or tetrapeptides19 are commonly used for the
testing and parametrization of amino acid backbones in
molecular mechanics force fields.19-21 Generally, a modular
approach is followed, where alanine dipeptide-derived bonded
and nonbonded parameters are used for modeling the
backbone of all nonglycine and nonproline residues.22

However, in some force fields, for example, Amber,23 the
partial charges of the backbone atoms may vary slightly for
each amino acid.

The development of amino acid backbone parameters
based on alanine dipeptide commonly relies on ab initio
calculations since sufficiently detailed thermodynamic or
kinetic data are not available from experiments. Ab initio
calculations typically provide reference conformational ener-
gies in a vacuum for selected conformers. Recently, it has
become possible to obtain conformational energies of alanine
dipeptide from high-level theory over the entire range of φ/Ψ
values on a grid with 15° resolution. This data has allowed
much finer control in the parametrization of φ/Ψ torsion
parameters and challenged the established paradigm of using
a combination of univariate Fourier-series torsion potentials
to generate the torsion potential.21 In order to better represent
the complex features of the φ/Ψ free energy landscape, a
map-based spline-interpolated cross-correlation term (CMAP)
has been introduced into the CHARMM force field.21,24 The
CMAP term can directly reproduce any given φ/Ψ map in
alanine dipeptide and has been used in particular to reflect
the vacuum conformational energies from the ab initio
calculations. With the CMAP correction, the torsional
preferences in peptides and proteins were found to be
substantially improved by reducing an overemphasis on the
sampling of π-helical structures25 and by reducing deviations
from crystallographic structures in molecular dynamics
simulations.24

The possibility to exactly reproduce the ab initio φ/Ψ map
of alanine dipeptide with the CMAP formalism raises the
issue of whether parameters derived from alanine dipeptide
in a vacuum are appropriate for all of the other (nonglycine
and nonproline) amino acids and for condensed phase
environments. More specifically, the question is whether the
sampling of φ/Ψ torsion angles in protein simulations with
a common underlying torsion potential reproduces the amino
acid type-dependent variations found in crystallographic
structures. A secondary point of biophysical interest is to
what extent the φ/Ψ preferences observed for a given amino
acid in the context of protein structures are inherently present
at the dipeptide level or are a result of interactions due to
the polypeptide and protein environments. In order to probe
these questions, long-time molecular dynamics simulations
of all amino acid dipeptides and selected proteins were
carried out and compared with data extracted from crystal-
lographic structures in the Protein Data Bank.26 The results
demonstrate that a single torsion potential is largely sufficient
to reproduce the subtle variations in φ/Ψ preferences in the
context of proteins. Furthermore, it is found that residue type-
dependent variations in φ/Ψ preferences are largely absent
at the dipeptide level and only fully materialize in the context
of protein structures. The results are described and discussed

Figure 2. Blocked alanine dipeptide structure.
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in more detail in the following, after a summary of the
methodology used in this study.

Methods

Molecular dynamics simulations in explicit solvent were
carried out for all amino acid dipeptides and eight small- to
medium-size proteins. Dipeptides were blocked with an
acetyl group at the N terminus and with N-methylamide at
the C terminus. Each amino acid dipeptide was simulated in
its standard protonation state at pH ) 7. Two simulations
were run for histidine, one protonated at Nδ, the other one
at Nε. In all cases except proline, the starting structure was
a fully extended peptide with backbone torsions near (φ )
-160, Ψ ) 130). The starting structure for proline was near
(φ ) -60, Ψ ) 160). The dipeptides were solvated with
explicit water in a cubic box with at least 12 Å from any
atom in the dipeptide to the closest edge of the box. Charged
amino acids were neutralized with either a single chlorine
or sodium ion, placed initially by randomly replacing one
of the water molecules. Initial configurations were briefly
minimized and then heated up to 298 K during a series of
simulations with 1 ps at 50 K, 1 ps at 100 K, 1 ps at 150 K,
2 ps at 200 K, 2 ps at 250 K, 2 ps at 275 K, and 2 ps at 300
K. Further equilibration was carried out with three simula-
tions at 300 K over 4 ps each. For each run, the average
water density at the edge of the box was calculated and
compared to the expected number density of water of
0.03337/Å3 at 300 K and 1 atm of pressure. If any deviation
was found, the box size was adjusted accordingly. Simula-
tions in the NVT ensemble were then continued for another
150 ns to generate the production trajectories used for
analysis. The CHARMM22 force field20 with the CMAP
torsion potential21 and updated tryptophan parameters27 was
used for the dipeptide. Modified TIP3P28 parameters from
the CHARMM force field were used to model the explicit
water. Ion parameters were taken from Roux.29 Periodic
boundaries were employed to avoid solvent boundary
artifacts. Electrostatic interactions were calculated with the
particle-mesh Ewald method30 using a 32 × 32 × 32 grid
for the discrete fast Fourier transform (FFT) and a 9 Å direct
space cutoff. During the simulation, SHAKE31 was applied
to constrain the lengths of bonds involving hydrogen so that
an integration time step of 2 fs could be used. The
temperature was controlled with the Nosé-Hoover algo-
rithm.32

Eight proteins were simulated over 22-148 ns. Table 1
summarizes the simulation details for each protein. Table 2

shows the number of each amino acid from the combined
set of proteins. All proteins were started from experimental
structures and solvated with sufficient counterions to neutral-
ize each system. The same equilibration protocol and
simulation parameters as described above for the dipeptide
simulations were applied, except that larger FFT grid sizes
were used according to the increased box sizes.

All of the simulations were run with the CHARMM
program33 in conjunction with the MMTSB Tool Set.34 A
trajectory analysis was also carried out with CHARMM and
the MMTSB Tool Set.

The analysis of Protein Data Bank (PDB) structures was
performed on the basis of 3326 chains from crystal structures
with 2.0 Å resolution or better and not more than 25%
sequence identity between any two chains. The list of chains
was generated with the protein structure culling server
PISCES35 in June 2007. Table 2 shows the number of each
amino acid in the analyzed PDB structures.

Results

Protein Simulations. The conformations sampled during
the protein simulations were compared to experimental
structures to gauge the degree of realism in the simulations.
Experimental structures of monomeric, wild-type apo forms
are available from both X-ray crystallography and NMR
spectroscopy for all of the systems simulated here with one
exception. The crystal structure of barstar was taken from
the complex of barstar with ribonuclease Sa (PDB code:
1AY7). Average and final root-mean-square deviation (rmsd)
values during the simulation as well as the rmsd of the
average structure over the entire trajectory are reported in
Table 3. The latter is the most appropriate measure when
comparing to the experimental data. In general, the rmsd of
the average is lower than the average instantaneous rmsd
values. Furthermore, in all cases, the deviation from the
crystallographic structures is less than the deviation from

Table 1. Overview of Simulated Systems

system
starting

structure residues box length [Å]
simulation
length [ns]

dipeptides extended 1 31.5-35.3 150.0
protein G 3GB1 56 61.0 50.0
ubiquitin 1D3Z 76 69.3 22.0
barnase 1A2P 108 56.9 148.0
barstar 1BTA 89 52.4 142.9
CheY 1CYE 129 56.4 124.7
FKBP12 1FKS 107 62.6 143.5
RNase A 2AAS 124 59.7 148.3
RNase H 2RN2 155 69.5 121.5

Table 2. Number of Each Amino Acid in Simulated
Proteins and Protein Data Bank (PDB) Structuresa

amino acid Protein simulations PDB chains

alanine 66 56716
arginine 35 34832
asparagine 37 28621
aspartic acid 49 39407
cysteine 14 8740
glutamine 38 25817
glutamic acid 57 46199
glycine 62 50196
histidine 10 15522
isoleucine 41 38399
leucine 63 62782
lysine 61 38784
methionine 14 14065
phenylalanine 19 27547
proline 27 32923
serine 43 39330
threonine 63 36648
tryptophan 15 10187
tyrosine 28 24099
valine 50 48320

a Pre-proline residues are not included in non-proline amino
acid totals.
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the NMR structure. The rmsd of the average from the
crystallographic structure is less than 1 Å for three of the
proteins studied here and between 1 and 2 Å for four other
systems. For FKBP12, the deviation is larger, 2.68 Å, due
to large fluctuations of residues 32-45 and 80-95, which
consist mostly of long loop regions. It is likely that even
150 ns is not sufficient to fully sample the conformational
space of those flexible regions and that much longer
simulations might be required to improve the agreement with
the experimental structures that are averaged over much
longer time scales and over a large number of molecules.
While the small deviations of the average simulated structures
from the experimental structures indicate a high level of
realism in the simulations, the larger average instantaneous
rmsd values with significant standard deviations indicate
broad conformational sampling well beyond the time- and
ensemble-averaged experimental structures.
O/Ψ Sampling in Protein Simulations versus PDB

Structures. The distribution of φ/Ψ backbone torsion angles
was analyzed from the protein simulations as a function of
the amino acid type and compared to the distributions from
PDB structures. Results for selected amino acids representa-
tive of major variations in φ/Ψ sampling are shown in
Figures 3 and 4. Data for all of the other amino acids are
given in Figure S1 in the Supporting Information. The
agreement between the results from the simulations and from
the PDB is remarkably good, especially in the lower-energy
regions. A prominent difference is the significant population
of high-energy regions in the simulations from instantaneous
conformational sampling over very long simulations. Most
of these regions are populated only sparsely in the PDB
structures.

From a more detailed comparison of the PDB distributions
with the simulation results, it can be seen that the subtle
variations as a function of amino acid type are reproduced
well. In particular, there is good agreement in the following
key features: In asparagine, the � region is more extended,
the transition region between the R and � basins is lowered,
the preference for a second minimum in the R-helical basin
at (φ )-100, Ψ ) 0) is more pronounced, and the sampling
of RL conformations is relatively favorable. In threonine, the

� region is split into four distinct minima and the preference
for (φ ) -100, Ψ ) 0) is enhanced and extended toward
(φ ) -140, Ψ ) -30). Finally, in valine, there is a broad
minimum near (φ ) -120, Ψ ) 130) and sampling of fully
extended conformations near (φ ) -180, Ψ ) 180) is
reduced while the R-helical basin extends to (φ ) -140, Ψ
) -20) and (φ ) -100, Ψ ) -50).

It is remarkable how well the sequence-dependent varia-
tions in φ/Ψ preferences are reproduced with a single
alanine-dipeptide-based CMAP torsion angle term, but there
are also some deficiencies that could possibly be addressed
through force field adjustments: In general, it appears that
fully extended conformations near C5 are slightly too
favorable over PPII conformations. Furthermore, sampling
of the C7eq conformation near (φ ) -75, Ψ ) 75) in the
R/� transition region appears to be too unfavorable, which
is especially apparent in alanine and asparagine. In asparagine
and to a lesser extent in alanine, there is a third minimum in
the simulations near (φ ) -160, Ψ ) 0) which is not seen
in the PDB distributions. Finally, valine did not sample the
right side of the Ramachandran plot in the simulations.
However, it is likely that this may be a reflection of the
limited set of simulated structures rather than inherent force
field deficiencies since a valine residue not initially found
in a conformation with positive φ angles is unlikely to be
able to assume such a conformation without major structural
disruption unless it is located in a flexible loop region.

The backbone conformational preferences of proline and
glycine residues are compared in Figure 4. It should be
noted that different CMAP torsion potentials are used for
those residues in the CHARMM force field to separately
reproduce the ab initio φ/Ψ maps for proline and glycine
dipeptide. The overall features of both maps are repro-
duced well between the simulations and PDB distributions,
although there are also some notable differences: In
glycine, there appears to be a lack of a clear minimum at
RR in the simulations. Instead, there is a minimum at (φ
) -80, Ψ ) 10). There are also minima at (φ ) -180,
Ψ ) -25) and (φ ) -160, Ψ ) 30) next to a high-
energy region that do not seem to match the φ/Ψ
preferences in the experimental structures, while the

Table 3. Root Mean Square Deviations from Experimental Structures in Protein Simulations (Standard Deviations Are Given
in Parentheses)

system reference type avg. CR rmsd [Å]
CR rmsd of

final structure [Å]
CR rmsd of

avg. structure [Å]

protein G 3GB1 NMR 1.06(0.20) 1.43 0.79
1PGB X-ray 0.81(0.21) 0.84 0.41

ubiquitin 1D3Z NMR 1.41(0.20) 1.28 1.25
1UBQ X-ray 1.24(0.18) 1.13 1.04

barnase 1FW7 NMR 1.71(0.15) 1.67 1.35
1A2P X-ray 1.54(0.25) 1.37 1.15

barstar 1BTA NMR 1.34(0.16) 1.21 1.15
1AY7B X-ray 0.97(0.12) 0.85 0.67

CheY 1CYE NMR 1.43(0.20) 1.70 1.18
3CHY X-ray 1.13(0.17) 1.14 0.84

FKBP12 1FKS NMR 3.58(0.74) 4.77 2.74
1FKK X-ray 3.58(0.63) 4.58 2.68

RNase A 2AAS NMR 2.49(0.43) 3.21 2.04
8RAT X-ray 2.18(0.34) 2.70 1.58

RNase H 1RCH NMR 2.78(0.17) 2.89 2.54
2RN2 X-ray 1.98(0.23) 2.01 1.62
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relative energy of C7eq conformations (φ ) -75, Ψ )
75) appears to be too high. In proline, the two major
minima at RR and PPII are reproduced reasonably well,
but the C7eq conformation is again not favorable enough.
Furthermore, the entire transition region is shifted to more
negative φ angles.

Further analysis was carried out to compare the relative
sampling of conformations in the major basins (R, �, and
RL). Table 4 shows the results for nonglycine and nonproline
amino acids. The preference for sampling in the R basin
versus the � basin matches to a large extent known secondary
structure propensities,36-38 especially for alanine and glutam-

Figure 3. Potentials of mean force for the sampling of φ/Ψ backbone torsion angles in selected amino acid residues from PDB
structures (left column), protein simulations (center column), and dipeptide simulations (right column). A color bar indicating the
energy levels is given in Figure 4.
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ic acid, which have high helical propensities.36 However, it
is interesting that the relative sampling of RR versus R′
conformations within the R basin seems to be an overall
better predictor of the propensity to form R helices. All of
the amino acids with significant propensities to form R
helices36 (Ala, Gln, Glu, Ile, Leu, Lys, Met, Phe, Trp, and
Val) strongly favor RR sampling over R′ compared to the
remaining residues, with arginine being the only exception.
Conformations on the right-hand side of the Ramachandran

plot are important in the formation of turns. The propensity
to form RL conformations is exceptionally high in asparagine
and significant in aspartic acid, histidine, and lysine. This
correleates with the high frequency of asparagine and aspartic
acid residues in turn regions.36

The R/�/RL propensities from the protein simulations agree
qualitatively with the results from the PDB analysis for most
amino acids. Larger deviations are found for amino acids
with a small number of representatives in the test sets, in

Figure 4. Potentials of mean force for the sampling of φ/Ψ backbone torsion angles in glycine and proline as in Figure 3.

Table 4. Relative Sampling (in %) of Different Regions in the Ramachandaran Plot for Each Amino Acid in PDB Structures,
Simulated Proteins, and Dipeptidesa

PDB chains protein simulations dipeptides

amino acid R (RR/R′) � RL R (RR/R′) � RL R (RR/R′) � RL

Ala 66 (8.1) 31 1.2 73 (4.4) 23 3.6 48 (0.80) 48 2.7
Arg 60 (4.8) 36 2.5 52 (3.3) 43 4.4 47 (0.68) 50 3.0
Asn 51 (1.4) 33 12 51 (1.7) 32 16 46 (0.28) 31 21
Asp 57 (2.1) 34 5 61 (2.2) 37 0.0 48 (1.41) 49 2.7
Cys 45 (3.2) 51 2.2 28 (3.4) 67 2.1 42 (0.59) 51 6.4
Gln 64 (4.9) 31 2.7 59 (4.3) 34 6.1 46 (0.57) 45 8.4
Glu 68 (6.3) 29 1.7 55 (4.1) 39 4.7 38 (1.46) 60 2.4
His 52 (2.4) 41 4.0 23 (12) 29 48 36 (0.44) 42 20
Ile 47 (9.0) 53 0.1 33 (6.2) 67 0.2 49 (0.40) 51 0.2
Leu 61 (5.5) 37 0.7 57 (3.9) 42 0.0 46 (1.05) 51 2.3
Lys 62 (5.1) 34 3.0 48 (6.4) 45 5.8 42 (0.79) 48 8.8
Met 58 (5.2) 39 1.6 48 (6.5) 45 5.2 54 (0.95) 45 1.1
Phe 49 (3.5) 48 1.7 23 (115) 75 0.3 42 (0.46) 46 10
Ser 51 (2.6) 45 1.7 44 (1.6) 50 4.9 33 (0.69) 46 19
Thr 49 (2.2) 50 0.4 31 (1.3) 67 1.2 57 (0.69) 41 1.9
Trp 53 (4.5) 45 1.4 46 (12) 39 14 51 (0.54) 46 2.5
Tyr 49 (3.1) 48 1.7 34 (1.2) 61 3.9 52 (0.39) 38 9.1
Val 42 (7.9) 58 0.2 34 (7.8) 66 0.0 55 (0.84) 45 0.1

a Pre-proline residues are not included in non-proline amino acid totals. The R basin is defined by the rectangle spanned by (φ ) -180,
Ψ ) 50) and (φ ) 0, Ψ ) -100) with the RR minimum at (φ ) -80, Ψ ) -15) to (φ ) -35, Ψ ) -60) and the secondary minimum (R′) at
(φ ) -140, Ψ ) 40) to (φ ) -60, Ψ ) -15). The � basin is defined by (φ ) -210, Ψ ) 210) to (φ ) 0, Ψ ) 85) without further subdivision
because of a wide variation in sampling in different amino acids. The RL basin is defined by (φ ) 0, Ψ ) 100) to (φ ) 110, Ψ ) -25). R/�
propensities larger than 50% and RL propensities larger than 3% are highlighted in bold.
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particular cysteine, tryptophan, histidine, methionine, and
phenylalanine, where the results presented here may not be
statistically relevant. However, since only amino acids in
flexible loop regions and at the termini are able to undergo
conformational transitions between the major conformational
basins without disrupting the overall structure, the simulations
largely reflect the specific distribution of secondary structure
elements in the simulated proteins rather than amino acid
dependent propensities to form different secondary structure
elements according to the underlying force field. The relative
sampling of RR versus R′ conformations is also in good
qualitative agreement between the simulations and PDB
distributions (if amino acids that are rare in the simulations
are excluded again). Overall, the ratio of RR to R′ sampling
is smaller in the simulations (average, without Cys, Trp, His,
Met, and Phe: RR/R′ ) 3.7) compared to the PDB analysis
(average RR/R′ ) 4.8), suggesting that the sampling of R′
might be too favorable in the simulations.

O/Ψ Preferences in Dipeptides versus Proteins. The
comparison of φ/Ψ preferences between the protein simula-
tions and PDB structures provides an idea of how well the
computational methodology can reproduce experimental data.
On the other hand, a comparison of φ/Ψ preferences between
protein simulations or experimental data and dipeptide
simulations addresses the more fundamental question of to
what extent amino acid dependent variations in φ/Ψ prefer-
ences found in proteins are already apparent at the dipeptide
level. The results in Figure 3 show that the φ/Ψ preferences
vary only to a small degree between different amino acid
dipeptides, suggesting that amino acid dependent variations
in φ/Ψ preferences do in fact stem predominantly from
interactions due to polypeptide and protein environments.
Closer inspection reveals some differences between different
amino acids. Most significant are variations in the preferences
for positive φ values. As in the protein simulations (and PDB
distributions), asparagine dipeptide samples RL more fre-
quently, while valine dipeptide samples RL less frequently
than the alanine and threonine dipeptides. Furthermore,
alanine and asparagine dipeptides (as well as arginine,
cysteine, glutamine, glutamic acid, histidine, methionine,
serine, tryptophan, and phenylalanine; see Figure S1, Sup-
porting Information) extend the R basin toward φ values near
-170, while the other dipeptides do not significantly populate
that region. In the � basin, the overall minimum lies at PPII
for all dipeptides, but very subtle variations in the confor-
mational landscape of the � basin are apparent. These small
differences, for example, diminished sampling near (φ )
-170, Ψ ) -170) for valine, partially mimic the more
pronounced variations in the �-basin landscape in the protein
simulations and PDB structures but are far from completely
reproducing the amino acid dependent variations seen in the
protein context. Conformational preferences of glycine and
proline dipeptides mostly resemble the preferences within
the protein simulations, but differences in sampling fully
extended conformations and the transition region near (φ )
-100, Ψ ) -100) are apparent in glycine.

The relative sampling of the major conformational basins
in the dipeptides also differs from the protein simulations
and PDB structures (see Table 4). The relative sampling of

the R basin is generally at or below 50% and less than the
relative percentage in the PDB structures for most amino
acids. Exceptions are threonine and valine, where conforma-
tions in the R basin are sampled more often in the dipeptide
than in the protein context. The strong preference for
R-helical conformations in alanine, glutamine, glutamic acid,
leucine, and lysine found in the PDB structures is not
apparent at the dipeptide level. It is particularly remarkable
that glutamic acid, which is known to be a strong helix-
forming amino acid,36 actually has the highest propensity
for extended structures at the dipeptide level compared to
all of the other amino acids. Furthermore, the ratios of RR

to R′ sampling are much lower in the dipeptides, mostly
below 1, indicating that the sampling of RR conformations
is relatively disfavored in the dipeptides. Therefore, the
polypeptide context and, in particular, the ability to form i,
i + 4 backbone hydrogen bonding is essential in stabilizing
R-helical secondary structure elements.

The RL conformations are sampled at widely varying levels
in the dipeptides. Asparagine, histidine, and serine dipeptides
spend nearly 20% of the time in the RL conformation, while
isoleucine and valine essentially never sample RL. This can
be understood as a result of attractive intramolecular
electrostatics between asparagine, histdine, and serine side
chains and the peptide backbone and unfavorable side chain
backbone interactions in the case of isoleucine and valine.
The amino acid dependent propensities for RL conformations
in the dipeptides do not agree very well with the results from
the protein simulations or PDB. However, an overall
increased preference for RL conformations compared to the
PDB structures is apparent in both the dipeptide and protein
simulations. This finding may suggest a need for raising the
energy of RL conformations in the force field.

Discussion and Conclusion

Previous studies have examined the detailed distribution of
φ/Ψ torsion angles in experimental structures as a function
of the amino acid type.6,7 Here, these results are compared
with torsional preferences from extensive simulations of
proteins and dipeptides. The torsional preferences in the
protein simulations are in good qualitative and quantitative
agreement with the distribution of φ/Ψ angles found in PDB
structures. Variations as a function of the amino acid type
are generally represented well, including subtle features in
the detailed energy landscape of the R and � basins. In
contrast, φ/Ψ preferences in amino acid dipeptides vary much
less as a function of the amino acid type. Some of the amino
acid dependent variations seen in the context of proteins are
also apparent at the dipeptide level, such as the preference
for RL sampling, but other features such as the preference
for R-helical conformations in glutamic acid and the strong
tendency to sample RR conformations over R′ are not
reproduced in the dipeptide simulations. These results suggest
that local interactions at the residue level play only a small
role in determining the sequence-dependent torsional prefer-
ences of peptide backbones, while the more important
contributions come from long-range interactions in the
context of polypeptide chains and protein structures. An
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example is the observation of helix-capping interactions by
glutamic acid residues that are not present at the dipeptide
level.39

The same underlying CMAP torsion potential was used
in all of the simulations. One of the main questions prompting
this study is whether a common CMAP torsion potential for
all nonglycine/nonproline residues is sufficient to accurately
reproduce the sequence-dependent variations in φ/Ψ prefer-
ences. On the basis of the results presented here, this is
apparently the case, further supporting the idea that the
observed modulation of φ/Ψ preferences is largely a function
of longer-range (electrostatic and Lennard-Jones type) in-
teractions with neighboring residues and beyond.

Overall, the φ/Ψ preferences agree well between the
protein simulations and PDB distributions. However, a close
inspection suggests that the agreement could be improved
further by slight force field adjustments. In particular, it
appears that the sampling of positive φ values, of φ values
below -150, and of the R′ conformation is too favorable
relative to other parts of the energy landscape, while C7eq

sampling is underrepresented. There are also differences in
the conformational preferences of glycine and proline
residues that could be addressed by force field modifications.
It is straightforward to adjust the CMAP torsion potentials
accordingly, and future studies will examine how simulations
with such a modified torsion potential affect the overall
sampling of protein structures.

A constant concern with simulation studies is the achieve-
ment of converged sampling of all statistically relevant
conformational regions. It appears that the dipeptide simula-
tions over 150 ns are sufficient (or at least close to it) since
many transitions are observed between the major basins in
all of the simulations. However, it is possible that protein
simulations of up to 150 ns do not completely sample the
conformational space accessible during biological and ex-
perimental time scales of milliseconds to minutes. One
consequence of the limited test sets is that the simulation
results provide little information about the relative sampling
of R versus � conformations since the observed R versus �
propensities are largely a function of the native secondary
structures of the chosen test proteins. Further studies of small
helix- and hairpin-forming peptides with the same methodol-
ogy will be necessary to examine the relative sampling of R
versus � conformations in the context of proteins in more
detail. However, the sampling of relative conformations
within a given basin is expected to be more meaningful since
the corresponding structural variations could largely be
accommodated without major disruption of a given protein
structure.

The dipeptide simulations can be compared to spectro-
scopic data that indicate that PPII and C5 are the dominant
conformations in solution, while RR is populated only to a
small extent in alanine and valine dipeptides.14,18 The
dipeptide simulations presented here show a more equal
sampling of R and � basins, suggesting a slight bias toward
R-helical conformations. Such a bias has also been suspected
in other recent studies with the CHARMM force field in
conjunction with the CMAP potential and will require further
exploration.40 A force field that better reproduces experi-

mental data for dipeptides and other small peptides may also
alter the torsional preferences in the protein simulations
reported here. The hope is that such modifications would
improve the agreement with the conformational preferences
from the PDB and lead to conformational sampling in even
better agreement with crystallographic structures for indi-
vidual proteins. It is possible, though, that the fixed charged
force field used here places limitations on how well
experimental data for small peptides and larger proteins can
be reproduced simultaneously. In this context, it should be
stressed that the simulations reported here only consider the
combination of the CHARMM force field with the CMAP
torsion potential, and specific results may vary for other force
fields. It is likely, however, that the general conclusions are
equally valid for other force fields where similar assumptions
of a common backbone torsion potential based on alanine
dipeptide are made.

Finally, it should be noted that there is a fundamental
difference in the way the potentials of mean force are
obtained from the simulations and from the experimental
structures. The results from the simulations are obtained from
a small number of structures over a large number of
instantaneous conformations. On the other hand, the results
from the experiment are obtained from a large number of
structures, each representing an ensemble and time average.
The potentials of mean force agree quantitatively very well
in the low-energy regions, thereby confirming the validity
of the ergodic hypothesis that time averages are equivalent
to ensemble averages. In contrast, higher-energy regions are
not sampled extensively in the PDB structures, while the
simulations show broad conformational sampling well be-
yond the major conformational basins. This difference is
primarily a result of the relatively small sample size used in
the analysis of the PDB structures. For example, ap-
proximately 57 000 alanine conformations were analyzed
from PDB structures (see Table 2) compared to approxi-
mately 17 million conformations from the simulations (66
alanine residues over an average simulation length of 130
ns with conformations saved every 0.5 ps). However, it is
also possible that experimental structures, except for struc-
tures at the very highest resolution, reflect to some extent
assumptions about ideal molecular bonding geometries if
imposed during molecular refinement. Such constraints would
limit the sampling of noncanonical regions of the Ramachan-
dran plot in the experimental structures. It should be
mentioned that there are also some theoretical concerns that
have been raised about extracting potentials of mean force
from PDB structures;41 however, these arguments may not
apply to the present study since we are analyzing simulations
and crystallographic structures in an equivalent manner.

We now come back to the central question of this paper:
Is alanine dipeptide a good model for representing the
torsional preferences of protein backbones? The answer is
“yes” and “no”. It appears that force field parametrization
based on alanine dipeptide along with suitable long-range
interactions can accurately reflect amino acid dependent
variations in backbone torsional preferences in the context
of protein structures. This suggests that a modular approach
in the development of the force field is justified, and specific
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modifications to bonding terms as a function of amino acid,
with the exception of glycine and proline, are probably not
necessary. However, the φ/Ψ preferences differ significantly
between dipeptide and protein environments. As a conse-
quence, dipeptides do not appear to be a suitable model for
understanding the backbone torsional preferences of amino
acids in proteins.
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